Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T00:21:51.309Z Has data issue: false hasContentIssue false

6 - Raman Spectroscopy

Theory and Laboratory Spectra of Geologic Materials

from Part I - Theory of Remote Compositional Analysis Techniques and Laboratory Measurements

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

This chapter describes the phenomenon of Raman scattering from the point of view of classical electrodynamics and quantum mechanics. Raman scattering is a type of inelastic scattering of light by molecules that changes the energy of a photon by the energy equal to a vibrational transition of that molecule. The symmetry of vibrational modes and the activity of vibrational modes in Raman spectra is discussed via group theory for molecules and minerals. The chapter describes how the information gleaned from Raman spectra can be used to identify structural information about a given sample and how this information can be useful to Earth and planetary scientists. The principal components of laboratory and remote Raman instrumentation are defined, including excitation sources, spectrographs, and detectors, and the ways in which recent advances in technology have facilitated the application of Raman spectroscopy for Earth and planetary science are discussed. Some technological advances include the development of reliable continuous wave (CW) and pulsed lasers at a variety of wavelengths, the advancement of multichannel detectors such as two-dimensional charge-coupled devices and photodiode arrays, and the coupling of optical accessories such as microscopes and telescopes. The applications of these advanced Raman systems in the fields of Earth and planetary science are highlighted.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 120 - 146
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, T.E, Scott, E.R.D., Sharma, S.K., & Misra, A.K. (2013) The pressures and temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite. American Mineralogist, 98, 859869.Google Scholar
Adams, D.M. & Newton, D.M. (1970a) Tables for factor group analysis of the vibrational spectra of solids. Journal of the Chemical Society A, 1970, 28222827.Google Scholar
Adams, D.M. & Newton, D.M. (1970b) Tables for factor group analysis. Beckman-RICC Ltd., Reading, UK.Google Scholar
Adams, D.M., Sharma, S.K., & Appleby, R. (1977) Spectroscopy at very high pressures: Part 14. Laser Raman scattering in ultra-small samples in the diamond anvil cell. Applied Optics, 16, 25722575.Google Scholar
Aminzadeh, A. (1997) Fluorescence bands in the FT-Raman spectra of some calcium minerals. Spectrochimica Acta, A53, 693797.Google Scholar
Angel, S.M., Carrabba, M., & Cooney, T.F. (1995) The utilization of diode lasers for Raman spectroscopy. Spectrochimica Acta, A51, 17791799.CrossRefGoogle Scholar
Angel, S.M., Gomer, N.R., Sharma, S.K., & McKay, C. (2012) Remote Raman spectroscopy for planetary exploration: A review. Applied Spectroscopy, 66, 137150.Google Scholar
Arns, J.A. (1995) Holographic transmission gratings improve spectroscopy and ultrafast laser performances. Proceedings of the Society of Photo-optical Instrumentation Engineers, 2404, 174181.Google Scholar
Arns, J.A., Colburn, W.S., & Barden, S.C. (1999) Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing, Proceedings of the Society of Photo-optical Instrumentation Engineers, 3779, 313323.Google Scholar
Aroyo, M.I., Perez-Mato, J.M., Capillas, C., et al. (2006a) Bilbao crystallographic server I: Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221, 1527.Google Scholar
Aroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M., & Wondratschek, H. (2006b) Bilbao crystallographic server II: Representations of crystallographic point groups and space groups. Acta Crystallographica, A62, 115128.CrossRefGoogle Scholar
Aroyo, M.I., Perez-Mato, J.M., Orobengoa, D., Tasci, E., de la Flor, G., & Kirov, A. (2011) Crystallography online: Bilbao crystallographic server. Bulgarian Chemistry Communications, 43, 183197.Google Scholar
Battey, D.E., Slater, J.B., Wludyka, R., Owen, H., Pallister, D.M., & Morris, M.D. (1993) Axial transmissive f/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating. Applied Spectroscopy, 47, 19131919.Google Scholar
Beegle, L.W., Bhartia, R., DeFlores, L., et al. (2014) SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals, an investigation for 2020. 45th Lunar Planet. Sci. Conf., Abstract #2835.Google Scholar
Bennett, C.J., Brotton, S.J., Jones, B.M., Misra, A.K., Sharma, S.K., & Kaiser, R.I. (2013) A novel high sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs. Analytical Chemistry, 85, 56595665.Google Scholar
Bertie, J.E. & Bell, J.W. (1971) Unit cell group and factor group in the theory of the electronic and vibrational spectra of crystals. Journal of Chemical Physics, 54, 160162.Google Scholar
Bhagvantam, S. (1940) Effect of crystal orientation on the Raman spectrum of calcite. Proceedings of the Indian Academy of Sciences A, 11, 6271.Google Scholar
Bhagavantam, S. & Venkatarayudu, T. (1939) Raman effect in relation to crystal structure. Proceedings of the Indian Academy of Sciences A, 9, 224258.Google Scholar
Bhagavantam, S. & Venkatarayudu, T. (1969) Theory of groups and its applications to physical problems. Academic Press, New York.Google Scholar
Bishop, J.L. & Murad, E. (2004) Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopy study of montmorillonite. Journal of Raman Spectroscopy, 35, 480486.CrossRefGoogle Scholar
Bishop, J.L., Englert, P.A.J., Patel, S., et al. (2014) Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: Coordinated analyses of Raman spectra, reflectance spectra and elemental abundances. Philosophical Transactions of the Royal Society of London A, 372, 20140198.Google Scholar
Bishop, J.L., King, S.J., Lane, M.D., et al. (2017) Spectral properties of anhydrous carbonates and nitrates. 48th Lunar Planet. Sci. Conf., Abstract #2362.Google Scholar
Blacksberg, J., Rossman, G.R., & Gleckler, A. (2010) Time-resolved Raman spectroscopy for in situ planetary mineralogy. Applied Optics, 49, 49514962.Google Scholar
Blacksberg, J., Alerstam, E., Maruyama, Y., Cochrane, C.J., & Rossman, G.R. (2016) Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array. Applied Optics, 55, 739748.Google Scholar
Buback, M. & Schulz, K.R. (1976) Raman scattering of pure ammonia at high pressures and temperatures. Journal of Physical Chemistry, 80, 24782482.CrossRefGoogle Scholar
Carter, J.C., Scaffidi, J., Burnett, S., Vasser, B., Sharma, S.K., & Angel, S.M. (2005) Stand-off Raman detection using dispersive and tunable filter based systems. Spectrochimica Acta, A61, 22882298.CrossRefGoogle Scholar
Chase, D.B (1986) Fourier transform Raman spectroscopy. Journal of the American Chemical Society, 108, 74857488.Google Scholar
Colthup, N.B., Daly, L.H., & Wiberley, S.E. (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic Press, New York.Google Scholar
Cooney, T.F. & Sharma, S.K. (1990) Structure of glasses in the system Mg2SiO4-Fe2SiO4, Mn2SiO4-Fe2SiO4, Mg2SiO4-CaMgSiO4 and Mn2SiO4-CaMnSiO4. Journal of Non-Crystalline Solids, 122, 1032.CrossRefGoogle Scholar
Cooney, T.F., Skinner, H.T., & Angel, S.M. (1995) Evaluation of external-cavity diode lasers for Raman spectroscopy. Applied Spectroscopy, 49, 1846–1851.Google Scholar
Cooper, J.B., Flecher, P.E., Albin, S., Vess, T.M., & Welch, W.T. (1995) Elimination of mode hopping and frequency hysteresis in diode laser Raman spectroscopy: The advantages of a distributed Bragg reflector diode laser for Raman excitation. Applied Spectroscopy, 49, 16921698.Google Scholar
Cornell, R.M. & Schwertmann, U. (2003) The iron oxides: Structure, reactions, occurrences and uses, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.Google Scholar
Cotton, F.A. (1963) Chemical applications of group theory. Wiley-Interscience, New York.Google Scholar
Damen, T.C., Porto, S.P.S., & Tell, B. (1966) Raman effect in zinc oxide. Physical Review, 142, 570574.CrossRefGoogle Scholar
DeAngeles, B.A., Newnham, R.E., & White, W.B. (1972) Factor group analysis of the vibrational spectra of crystals: A review and consolidation. American Mineralogist, 57, 255268.Google Scholar
de Faria, D.L.A., Venâncio Silva, S., & de Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28, 873878.Google Scholar
De La Pierre, M., Carteret, C., Maschio, L., André, E., Orlando, R., & Dovesi, R. (2014) The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. Journal of Chemical Physics, 140, 164509/1–12.Google Scholar
Delhaye, M. & Dhamelincourt, P. (1975), Raman microprobe and microscope with laser excitation. Journal of Raman Spectroscopy, 3, 3343.Google Scholar
Denson, S.C., Pommier, C.J.S., & Denton, M.V. (2007) The impact of array detectors on Raman spectroscopy. Journal of Chemical Education, 84, 6774.Google Scholar
Dhamelincourt, P., Wallart, F., Leclercq, M., N’Guyen, A.T., & Landon, D.O. (1979) Laser Raman molecular microprobe (MOLE). Analytical Chemistry, 51, 414A421A.Google Scholar
Dubessy, J., Caumon, M.-C., Rull, F., & Sharma, S. (2012) Instrumentation in Raman spectroscopy: Elementary theory and practice. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 83172.Google Scholar
Edwards, H.G.M., Wynn-Williams, D.D., & Jorge Villar, S.E. (2004) Biological modification of haematite in Antarctic cryptoendolithic communities. Journal of Raman Spectroscopy, 35, 470474.Google Scholar
Egan, M.J., Angel, S.M., & Sharma, S.K. (2017) Standoff spatial heterodyne Raman spectrometer for mineralogical analysis. Journal of Raman Spectroscopy, 48, 16131617, DOI:10.1002/jrs.5121.Google Scholar
Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W., & Mazurek, H. (1981) Raman scattering from ion-implanted graphite. Physical Review B, 24, 10271034.Google Scholar
Fateley, W.G., Dollish, F.R., McDevitt, N.T., & Bentley, F.F. (1972) Infrared and Raman selection rules for molecular and lattice modes. Wiley-Interscience, New York.Google Scholar
Ferigle, S.M. & Meister, A.G. (1952) Selection rules for vibrational spectra of linear molecules. American Journal of Physics, 20, 421428.Google Scholar
Ferini, G., Baratta, G.A., & Palumbo, M.E. (2004) A Raman study of ion irradiated icy mixtures. Astronomy & Astrophysics, 414, 757766.Google Scholar
Ferraro, J.R. (1975) Factor group analysis for some common minerals. Applied Spectroscopy, 29, 418420.Google Scholar
Ferraro, J.R. & Ziomek, J.S. (1969) Introductory group theory and its application to molecular structure. Plenum Press, New York.Google Scholar
Freeman, J.R., Wang, A., Kuebler, K.E., Jolliff, B.L., & Haskin, L.A. (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Canadian Mineralogist, 46, 14771500.Google Scholar
Frezzotti, M.L., Tecce, F., & Casagli, A. (2012) Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 120.CrossRefGoogle Scholar
Fries, M. & Steele, A. (2011) Raman spectroscopy and confocal Raman imaging in mineralogy and petrography. In: Confocal Raman microscopy (Dieing, T., Hollricher, O., & Toporski, J., eds.). Springer Series in Optical Sciences, 158. Springer-Verlag, Berlin and Heidelberg, 111133.Google Scholar
Gaft, M. & Nagli, L. (2009) Time-resolved laser based spectroscopies for mineralogical research and applications. In: Micro-Raman spectroscopy and luminescence studies in the Earth and planetary sciences (Gucsik, A., ed.). Mainz, Germany, April 2–4, 2009, American Institute of Physics (AIP) Conference Proceedings, 1163, 3–14.Google Scholar
Gaft, M., Reinsfeld, R., & Panczer, G. (2005) Modern luminescence spectroscopy of minerals and materials. Springer-Verlag, Berlin and Heidelberg.Google Scholar
Galeener, F.L. (1982a) Planner rings in glasses. Solid State Communication, 44, 10371040.Google Scholar
Galeener, F.L. (1982b) Planner rings in vitreous silica. Journal of Non-Crystalline Solids, 49, 5362.Google Scholar
Gasda, P.J., Acosta-Maeda, T.E., Lucey, P.G., Misra, A.K., Sharma, S.K., & Taylor, G.J. (2015) Next generation laser-based standoff spectroscopy techniques for Mars exploration. Applied Spectroscopy, 69, 173192.Google Scholar
Gillet, P. (1993) Stability of magnesite (MgCO3) at mantle pressure and temperature: A Raman spectroscopic study. American Mineralogist, 78, 13281331.Google Scholar
Gillet, P., Daniel, I., Guyot, F., Matas, J., & Chervin, J.C. (2000) A thermodynamic model for MgSiO3-perovskite derived from pressure and temperature and volume dependence of the Raman mode frequencies. Physics of the Earth and Planetary Interiors, 117, 361384.Google Scholar
Gomer, N., Gordon, C., Lucey, P., Sharma, S., Carter, J., & Angel, S. (2011) Raman spectroscopy using a spatial heterodyne spectrometer: Proof of concept. Applied Spectroscopy, 65, 849857.CrossRefGoogle ScholarPubMed
Goncharov, A.F. (2012) Raman spectroscopy at high pressures. International Journal of Spectroscopy, 2012, 617528/1–16.Google Scholar
Götze, J., Nasdala, L. Kleeberg, R., & Wenzel, M. (1998) Occurrence and distribution of “moganite” in agate/chalcedony: A micro-Raman, Rietfeld, and cathodoluminescence study. Contribution to Mineralogy and Petrology, 133, 96105.CrossRefGoogle Scholar
Halford, R.S. (1946) Motions of molecules in condensed systems: I. Selection rules, relative intensities, and orientation effects for Raman and infrared spectra. Journal of Chemical Physics, 74, 815.Google Scholar
Haskin, L.A., Wang, A., Rockow, K.M., Jolliff, B.L., Korotev, R.L., & Viskupic, K.M. (1997) Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: A point count method. Journal of Geophysical Research, 102, 1929319306.Google Scholar
Hemley, R.J., Bell, P.M., & Mao, H.K. (1987) Laser techniques in high-pressure geophysics. Science, 237, 605612.Google Scholar
Herzberg, G. (1945) Molecular spectra and molecular structure. II. Infrared and Raman spectra of polyatomic molecules. Van Nostrand Reinhold, New York.Google Scholar
Hirschfeld, T. & Chase, B. (1986) FT-Raman spectroscopy: Development and justification. Applied Spectroscopy, 40, 133137.Google Scholar
Hornig, D.F. (1948) The vibrational spectra of molecules and complex ions in crystals. I. General theory. Journal of Chemical Physics, 16, 10631076.Google Scholar
Hu, G., Xiong, W., Shi, H., Li, Z., Shen, J., & Fang, X. (2015) Raman spectroscopic detection for liquid and solid targets using a spatial heterodyne spectrometer. Journal of Raman Spectroscopy, 47, 289298.Google Scholar
Jennings, D.E., Weber, A., & Brault, J.W. (1986) Raman spectroscopy of gases with a Fourier transform spectrometer: The spectrum of D2. Applied Optics, 25, 284290.Google Scholar
Kaszowska, Z., Malek, K., Staniszewska-Slezak, E., & Niedzielska, K. (2016) Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochimica Acta, A169, 715.Google Scholar
Kingma, K.J. & Hemley, R.J. (1994) Raman spectroscopic study of microcrystalline silica. American Mineralogist, 79, 269273.Google Scholar
Kittel, C. (1976) Introduction to solid state physics, 5th edn. John Wiley & Sons, New York.Google Scholar
Kuebler, K.E., Jolliff, B.L., Wang, A., & Haskin, L.A. (2006) Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochimica et Cosmochimica Acta, 70, 62016222.Google Scholar
Lamsal, N., Sharma, S.K., Acosta, T.E., & Angel, S.M. (2016) UV standoff Raman measurements using a gated spatial heterodyne Raman spectrometer. Applied Spectroscopy, 70, 666675.Google Scholar
Lebedkin, S., Blum, C., Stürzl, N., Hennrich, F., & Kappes, M.M. (2011) A low wavenumber extended confocal Raman microscope with very high laser excitation line discrimination. Review of Scientific Instruments, 82, 013705/1–6.Google Scholar
Li, Z. & Deen, M.J. (2014) Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD. Optics Express, 22, 1873618747.CrossRefGoogle Scholar
Lopez-Reyes, G., Rull, F., Venegas, G., et al. (2014) Analysis of the scientific capabilities of the ExoMars Raman laser spectrometer instrument. European Journal of Mineralogy, 25, 721733.CrossRefGoogle Scholar
Lucey, P.G., Cooney, T.F., & Sharma, S.K. (1998) A remote Raman analysis system for planetary landers. 29th Lunar Planet. Sci. Conf., Abstract #1354.Google Scholar
Maraduddin, A.A. & Vosko, S.H. (1968) Symmetry properties of the normal vibrations of a crystal. Reviews of Modern Physics, 40, 137.Google Scholar
Matousek, P., Towrie, M., Stanley, A., & Parker, A.W. (1999) Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating. Applied Spectroscopy, 53, 14851489.Google Scholar
Matson, D.W., Sharma, S.K., & Philpotts, J.A. (1983) The structure of high-silica alkali-silicate glasses: A Raman spectroscopic investigation. Journal of Non-Crystalline Solids, 58, 323352.Google Scholar
Matson, D.W., Sharma, S.K., & Philpotts, J.A. (1986) Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. American Mineralogist, 71, 694704.Google Scholar
McCreery, R.L. (2000) Raman spectroscopy for chemical analysis. John Wiley & Sons, New York.Google Scholar
McKeown, D.A. (2005) Raman spectroscopy and vibrational analyses of albite: From 25°C through the melting temperature. American Mineralogist, 90, 15061517.CrossRefGoogle Scholar
McMillan, P. (1985) Vibrational spectroscopy in the mineral sciences. In: Microscopic to macroscopic: Atomic environments to thermodynamic properties (Kieffer, S.W. & Navrotsky, A., eds.). Reviews in Mineralogy, 14. Mineralogical Society of America, Washington, DC, 963.Google Scholar
McMillan, P.F. & Hofmeister, A.M. (1988) Infrared and Raman spectroscopy. In: Spectroscopic methods in mineralogy and geochemistry (Hawthorne, F.C., ed.). Reviews in Mineralogy, 18. Mineralogical Society of America, Washington, DC, 99159.Google Scholar
McMillan, P.F. & Wolf, G.H. (1995) Vibrational spectroscopy of silicate liquids. In: Structure, dynamics and properties of silicate melts (Stebbins, J.F, McMillan, P.F. & Dingwell, D.B., eds.), Reviews in Mineralogy, 32. Mineralogical Society of America, Washington, DC, 247314.Google Scholar
McMillan, P.F., Dubessy, J., & Hemley, R. (1996) Applications in Earth, planetary and environmental sciences. In: Raman microscopy: Developments and applications (Turrell, G. & Corset, J., eds.). Academic Press, New York, 289365.Google Scholar
Misra, A.K., Sharma, S.K., Chio, C.H., Lucey, P.G., & Lienert, B. (2005) Pulsed remote Raman system for daytime measurements of mineral spectra. Spectrochimica Acta, A61, 22812287.Google Scholar
Mysen, B.O. & Richet, P. (2005) Silicate glasses & melts: Properties and structure. Elsevier, New York.Google Scholar
Nadungadi, T.M.K. (1939) Effect of crystal orientation on the Raman spectrum of sodium nitrate. Proceedings of the Indian Academy of Sciences, A10, 197212.Google Scholar
Nasdala, L., Smith, D.C., Kaindl, R., & Ziemann, M.A. (2004) Raman spectroscopy: Analytical perspectives in mineralogical research. In: Spectroscopic Methods in mineralogy (Beran, A. & Libowitzky, E., eds.). EMU Notes in Mineralogy, 6. European Mineralogical Union and Mineralogical Society of Great Britain and Ireland, 281343.Google Scholar
Nieuwoudt, M.K., Comins, J.D., & Cukrowski, I. (2011) The growth of the passive film on iron in 0.05 MNaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. Journal of Raman Spectroscopy, 42, 13351339.Google Scholar
Owen, H. (2007) The impact of volume phase holographic filters and gratings on the development of Raman instrumentation. Journal of Chemical Education, 84, 6166.Google Scholar
Panczer, G., De Ligny, D., Mendoza, C., Gaft, M., Seydoux-Guillaume, A.-M., & Wang, X. (2012) Raman and fluorescence. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 122.Google Scholar
Pandya, N., Sharma, S.K., & Muenow, D.W. (1988) Calibration of a multichannel micro-Raman spectrograph with plasma lines of argon and krypton ion lasers. Microbeam analysis – 1988: Proceedings of the 23rd Annual Conference of the Microbeam Analysis Society, Milwaukee, Wisconsin, August 8–12, 1988 (Newbury, D. E., ed.). San Francisco Press, San Francisco, 171174.Google Scholar
Pasteris, J.D., Kuehn, C.A., & Bodnar, R.J. (1986) Applications of the laser Raman microprobe Ramanor U-1000 to hydrothermal ore deposits: Carlin as an example. Economic Geology, 81, 915930.Google Scholar
Porto, S.P.S., Giordmaine, J.A., & Damen, T.C. (1966) Depolarization of Raman scattering in calcite. Physical Review, 147, 608611.Google Scholar
Rai, C.S., Sharma, S.K., Muenow, D.W., Matson, D.W., & Byers, C.D. (1983) Temperature dependence of CO2 solubility in high-pressure quenched glasses of diopside composition. Geochimica et Cosmochimica Acta, 47, 953958.Google Scholar
Raman, C.V. (1928) A change of wave-length in light scattering. Nature, 121, 619–619.Google Scholar
Raman, C.V. & Krishnan, K.S. (1928) A new type of secondary radiation. Nature, 121, 501502.Google Scholar
Reynard, B., Montagnac, G., & Cardon, H. (2012) Raman spectroscopy at high pressure and temperature for study of the Earth’s mantle and planetary minerals. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12, European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 367390.Google Scholar
Roedder, E. (1984) Nondestructive methods of determination of inclusion composition. In: Fluid inclusions (Roedder, E., ed.). Reviews in Mineralogy, 12, Mineralogical Society of America, Washington, DC, 79108.Google Scholar
Rosasco, G.J., Etz, E.S., & Cassatt, W.A. (1975) The analysis of discrete fine particles by Raman spectroscopy. Applied Spectroscopy, 29, 396404.Google Scholar
Rossano, S. & Mysen, B.O. (2012) Raman spectroscopy of silicate glasses and melts in geological systems. Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F., & Caumon, M.-C., editors). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 321366.Google Scholar
Rull, F. (2012) The Raman effect and the vibrational dynamics of molecules and crystalline solids. In: Applications of Raman spectroscopy to Earth sciences and cultural heritage (Dubessy, J., Rull, F. & Caumon, M.-C., eds.). EMU Notes in Mineralogy, 12. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, 160.Google Scholar
Salthouse, J.A. & Ware, M.J. (1972) Point group character tables and related data. Cambridge University Press, Cambridge.Google Scholar
Sharma, S.K. (1979) Raman spectroscopy at very high pressure. Carnegie Institution of Washington Year Book, 78, 660665.Google Scholar
Sharma, S.K. (1989) Applications of advanced Raman techniques in Earth sciences. Vibrational Spectra and Structure, 17B, 513 568.Google Scholar
Sharma, S.K. (2007) New trends in telescopic remote Raman spectroscopic instrumentation. Spectrochimica Acta, A68, 10081022.Google Scholar
Sharma, S.K. & Simons, B. (1981) Raman study of crystalline polymorphs and glasses of spodumene (LiAlSi2O6) composition quenched from various pressure. American Mineralogist, 66, 118126.Google Scholar
Sharma, S.K., Hoering, T.C., & Yoder, H.S., Jr. (1979a) Quenched melts of akermanite compositions with and without CO2-characterization by Raman spectroscopy and gas chromatography. Carnegie Institution Washington Year Book, 78, 537542.Google Scholar
Sharma, S.K., Virgo, D., & Mysen, B.O. (1979b) Raman study of the coordination of aluminum in jadeite melts as function of pressure. American Mineralogist, 64, 779787.Google Scholar
Sharma, S.K., Mammone, J.F., & Nicol, M.F. (1981) Ring configurations in vitreous silica: A Raman spectroscopic investigation. Nature, 292, 140141.Google Scholar
Sharma, S.K., Philpotts, J.A., & Matson, D.W. (1985) Ring distributions in alkali- and alkaline-earth alumino-silicate framework glasses: A Raman spectroscopic study. Journal of Non-Crystalline Solids, 71, 403410.Google Scholar
Sharma, S.K., Yoder, H.S., Jr., & Matson, D.W. (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52, 19611967.Google Scholar
Sharma, S.K., Wang, Z., & van der Laan, S. (1996) Raman spectroscopy of oxide glasses at high pressure and high temperature. Journal of Raman Spectroscopy, 27, 739746.Google Scholar
Sharma, S.K., Cooney, T.F., Wang, Z., & van der Laan, S. (1997) Raman band assignments of silicate and germanate glasses in light of high pressure and high temperature spectral data. Journal of Raman Spectroscopy, 28, 679709.Google Scholar
Sharma, S.K., Misra, A.K., & Sharma, B. (2005) Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochimica Acta, A61, 24042412.Google Scholar
Sonwalker, N., Sunder, S.S., & Sharma, S.K. (1991) Raman microprobe spectroscopy of icing on metal surfaces. Journal of Raman Spectroscopy, 22, 551557.Google Scholar
Spinella, F., Barrata, G.A., & Strazzulla, G. (1991) An apparatus for in situ Raman spectroscopy of ion-irradiated frozen target. Review of Scientific Instruments, 62, 17431745.Google Scholar
Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., & Nealson, K.H. (2011) Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Review of Scientific Instruments, 72, 44524459.Google Scholar
Strazzulla, G. & Baratta, G.A. (1992) Carbonaceous material by ion irradiation in space. Astronomy and Astrophysics, 266, 434438.Google Scholar
Strazzulla, G., Baratta, G.A., & Palumbo, M.E. (2001) Vibrational spectroscopy of ion-irradiated ices. Spectrochimica Acta, A57, 825842.Google Scholar
Taran, M., Koch-Müller, M., Wirth, R., Abs-Wurmbach, I., Rhede, D., & Greshake, A. (2009) Spectroscopic studies of synthetic and natural ringwoodite, γ-(Mg, Fe)2SiO4. Physics and Chemistry of Minerals, 36, 217232.Google Scholar
Urmos, J.P., Sharma, S.K., & Mackenzie, F.T. (1991) Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist, 76, 641646.Google Scholar
Wang, Z., Cooney, T.F., & Sharma, S.K. (1993) High-temperature structural investigation of iron-bearing glasses and melts. Contributions to Mineralogy & Petrology, 115, 112122.Google Scholar
Wang, Z., Cooney, T.F., & Sharma, S.K. (1995) In situ structural investigation of iron-containing silicate melts and glasses. Geochimica Cosmochimica Acta, 59, 15711577.Google Scholar
Wang, A., Haskin, L.A., & Cortez, E. (1998) Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Applied Spectroscopy, 52, 477487.Google Scholar
Wang, A., Jolliff, B.L., Haskin, L.A., Kuebler, K.E., & Viskupic, K.M. (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. American Mineralogist, 86, 790806.Google Scholar
Wang, A., Haskin, L.A., Lane, A.L., et al. (2003) Development of the Mars Microbeam Raman Spectrometer (MMRS). Journal of Geophysical Research, 108 E1, 5005/1–18.Google Scholar
Wang, W., Major, A., & Paliwal, J. (2012) Grating-stabilized external cavity diode lasers for Raman spectroscopy: A review. Applied Spectroscopy Reviews, 47, 116143.Google Scholar
Warren, J.L. (1968) Further considerations on the symmetry properties of the normal vibrations of a crystal. Reviews of Modern Physics, 40, 3876.Google Scholar
White, W.B. (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: Infrared and Raman spectroscopy of lunar and terrestrial minerals (Karr, C., Jr., ed.). Academic Press, New York, 325358.Google Scholar
White, W.B. & De Angelis, B.A. (1967) Interpretation of the vibrational spectra of spinels. Spectrochimica Acta, A23, 985995.Google Scholar
Wiens, R.C., Maurice, S., McCabe, K., et al. (2016) The SUPERCAM remote sensing instrument suite for Mars 2020. 47th Lunar and Planetary Sci. Conf., Abstract #1332.Google Scholar
Winston, H. & Halford, R.S. (1949) Motions of molecules in condensed systems: V. Classification of motions and selection rules for spectra according to space symmetry. Journal of Chemical Physics, 17, 607616.Google Scholar
Zhao, J. & McCreery, R.L. (1996) Multichannel Fourier transform Raman spectroscopy: Combining the advantages of CCDs with interferometry. Applied Spectroscopy, 50, 12091214.Google Scholar
Zhao, J. & McCreery, R.L. (1997) Multichannel FT-Raman spectroscopy: Noise analysis and performance assessment. Applied Spectroscopy, 51, 16871697.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×