from Part III - Nonlocality: Illusion or Reality?
Published online by Cambridge University Press: 05 September 2016
Entanglement and nonlocality are studied in the framework of pre-/postselected ensembles with the aid of weak measurements and the two-state-vector formalism. In addition to the EPR–Bohm experiment, we revisit the Hardy and Cheshire Cat experiments, whose entangled pre- or postselected states give rise to curious phenomena. We then turn to even more peculiar phenomenon suggesting “emerging correlations” between independent preand postselected ensembles of particles. This can be viewed as a quantum violation of the classical “pigeonhole principle.”
Introduction
It is seldom acknowledged that seven years before the celebrated Bell paper [1], Bohm and Aharonov [2] published an analysis of the EPR paradox [3]. They suggested an experimental setup, based on Compton scattering, for testing nonlocal correlations between the polarizations of two annihilation photons. In 1964, Bell proposed his general inequality, thereby excluding local realism. During the same time, Aharonov et al. constructed the foundations of a time-symmetric formalism of quantum mechanics [4]. While Bell's proof utilizes entanglement to demonstrate nonlocal correlations,wewill describe inwhat follows the emergence of nonlocal correlations between product states. For this purpose, however, we shall invoke weak measurements of pre- and postselected ensembles.
In classical mechanics, initial conditions of position and velocity for every particle fully determine the time evolution of the system. Therefore, trying to impose an additional final condition would lead either to redundancy or to inconsistency with the initial conditions. This is radically different in quantum mechanics. Because of the uncertainty principle, an initial state vector does not fully determine, in general, the outcome of a future measurement. However, adding a final (backward-evolving) state vector results in a more complete description of the quantum system in between these two boundary conditions, which has a bearing on the determination of measurement outcomes.
The basis for this time-symmetric formulation of quantum mechanics was laid down by Aharonov, Bergman, and Lebowitz (ABL), who derived a symmetric probability rule concerning measurements performed on systems, while taking into account the final state of the system, in addition to the usual initial state [4].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.