from Part VII - Applications and implementations
Published online by Cambridge University Press: 05 September 2013
The principles of fault tolerance
In this chapter we will consider some of the practical difficulties in building a large-scale quantum computing device. This discussion relies heavily upon the prior chapters that introduced faulttolerant quantum computation. Assuming that fault tolerance is possible allows us to focus on the physical realization of these ideas with a few specific examples.
Before going into detail, we review the governing ideas behind any fault-tolerant architecture. These are the necessary components that we analyze in this chapter: good quantum memory, high-fidelity quantum operations, long-range quantum gates, and highly parallel operation, such that error correction in different sections of the device can be accomplished at the same time. While a wide variety of potential implementations may be possible, the goal of a fault-tolerant architecture is not only to be scalable, i.e., to be able to run an arbitrarily large computation with at most polynomial overhead [S95, S96e], but also to be as efficient as possible. Efficiency in this context means using the fewest physical resources (quantum bits, time, control operations) necessary to accomplish the desired computation [S03b].
From this perspective, the recipe for fault tolerance is well established. First, we need to identify what quantum operations are available for the various quantum bits at our disposal. Developing error models for these operations forms the bulk of this chapter. Important questions about operations include noise, implementation time, and bandwidth (how many such operations may be performed in parallel).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.