from Part III - Optical properties of quantum dots in photonic cavities and plasmon-coupled dots
Published online by Cambridge University Press: 05 August 2012
Introduction
During the past two decades, the development of micro- and nano-fabrication technologies has positively impacted multiple areas of science and engineering. In the photonics community, these technologies had numerous early adopters, which led to photonic devices that exhibit features at the nano-scale and operate at the most fundamental level of light–matter interaction [28, 39, 18, 29]. One of the leading platforms for these types of devices is based on gallium arsenide (GaAs) planar photonic crystals (PC) with embedded indium arsenide (InAs) quantum dots (QDs). The PC architecture is advantageous because it enables monolithic fabrication of photonic networks for efficient routing of light signals of the chip [26]. At the same time, PC devices have low loss and ultra-small optical mode volumes, which enable strong light–matter interactions. The InAs quantum dots are well suited for quantum photonic applications because they have excellent quantum efficiencies, large dipole moments, and a variety of quantum states that can be optically controlled [24, 3].
Currently, the development of these photonic technologies is geared mainly towards applications in quantum and classical information processing. The first proposals for quantum information processing using QDs in optical microresonators were developed more than a decade ago in the broader context of quantum information processing using quantum systems (such as atoms, ion, molecules) that can be optically controlled [23, 17]. Compared to other systems, the solid-state quantum photonic platform is attractive for quantum information applications because of its potential for large-scale integration [27].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.