from Part III - Optical properties of quantum dots in photonic cavities and plasmon-coupled dots
Published online by Cambridge University Press: 05 August 2012
Introduction
The ever-growing demand for fast optical data transmission calls for lasers offering high modulation rates and low energy consumption at the same time. Advances in growth and processing methods make quantum dot (QD) based lasers better candidates for this challenge than ever before. Placed in microresonators able to confine light in regions roughly the size of their wavelength, QDs pave the way to ultra-low threshold lasing. The most common resonator geometries aimed at three-dimensional light confinement are microdisks, photonic crystal membrane cavities and micropillars. The latter are especially good candidates for realizing microlasers suitable for applications as they offer directed emission and allow for parallel device processing. However, this increased efficiency also results in modified emission properties of QD lasers [8]. Semiconductor-specific processes like Pauli-blocking of states, the composite nature of the carriers involved and Coulomb interactions between carriers cause deviations from the standard atomistic laser picture. The main aim of our studies is to characterize microlaser emission in terms of photon statistics and coherence properties. Following Glauber, the most detailed description of a light field is given in a series of correlation functions describing coherence in different orders [10].
This chapter is organized as follows. Section 10.2 contains a brief review on the characteristic properties of micropillar lasers and discusses the emission properties of microlasers operated below and above threshold. Section 10.2.1 focuses on photon statistics and the classification of light fields.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.