Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:37:54.754Z Has data issue: false hasContentIssue false

Chapter 11 - Photosynthesis

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. (2013). Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Reviews 37, 286302.CrossRefGoogle ScholarPubMed
Brinkhoff, T., Giebel, H. A. & Simon, M. (2008). Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Archives of Microbiology 189, 531539.CrossRefGoogle ScholarPubMed
Burnap, R. L. (2015). Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria. Frontiers in Bioengineering and Biotechnology 3, 1.CrossRefGoogle ScholarPubMed
Dahl, C., Franz, B., Hensen, D., Kesselheim, A. & Zigann, R. (2013). Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process. Microbiology 159, 26262638.CrossRefGoogle Scholar
Fleischman, D. & Kramerb, D. (1998). Photosynthetic rhizobia. Biochimica et Biophysica Acta 1364, 1736.CrossRefGoogle ScholarPubMed
Hauruseu, D. & Koblížek, M. (2012). Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Applied and Environmental Microbiology 78, 74147419.CrossRefGoogle ScholarPubMed
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. & Huner, N.P.A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70, 222252.CrossRefGoogle ScholarPubMed
Zhang, C. C., Laurent, S., Sakr, S., Peng, L. & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367375.CrossRefGoogle ScholarPubMed

Secondary Sources

Barber, J. (2002). Photosystem II: a multisubunit membrane protein that oxidises water. Current Opinion in Structural Biology 12, 523530.CrossRefGoogle ScholarPubMed
Berghoff, B. A., Glaeser, J., Nuss, A. M., Zobawa, M., Lottspeich, F. & Klug, G. (2011). Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter. Environmental Microbiology 13, 775791.CrossRefGoogle Scholar
Drews, G. (2013). The intracytoplasmic membranes of purple bacteria – assembly of energy-transducing complexes. Journal of Molecular Microbiology and Biotechnology 23, 3547.Google ScholarPubMed
Frigaard, N.-U. & Bryant, D. A. (2004). Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Archives of Microbiology 182, 265276.CrossRefGoogle Scholar
Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C. & Bryant, D. A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 13121317.CrossRefGoogle ScholarPubMed
MacColl, R. (2004). Allophycocyanin and energy transfer. Biochimica et Biophysica Acta 1657, 7381.CrossRefGoogle ScholarPubMed
Mank, N. N., Berghoff, B. A., Hermanns, Y. N. & Klug, G. (2012). Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proceedings of the National Academy of Sciences of the USA 109, 1630616311.CrossRefGoogle ScholarPubMed
Rey, F. E. & Harwood, C. S. (2010). FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris. Molecular Microbiology 75, 10071020.CrossRefGoogle ScholarPubMed
Samsonoff, W. A. & MacColl, R. (2001). Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of Microbiology 176, 400405.CrossRefGoogle ScholarPubMed
Umeno, D., Tobias, A. V. & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews 69, 5178.CrossRefGoogle ScholarPubMed
Bryant, D. A. & Frigaard, N. U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology 14, 488496.CrossRefGoogle ScholarPubMed
Chan, L.-K., Morgan-Kiss, R. M. & Hanson, T. E. (2009). Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. Journal of Bacteriology 191, 10261034.CrossRefGoogle ScholarPubMed
González, Sevilla, A., Bes, E., , M. T., Peleato, M. L. & Fillat, M. F. (2016). Pivotal role of iron in the regulation of cyanobacterial electron transport. Advances in Microbial Physiology 68, 169217.Google Scholar
Gregersen, L. H., Bryant, D. A. & Frigaard, N.-U. (2011). Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Frontiers in Microbiology 2, 116.CrossRefGoogle ScholarPubMed
Hanson, T. E., Bonsu, E., Tuerk, A., Marnocha, C. L., Powell, D. H. & Chan, C. S. (2016). Chlorobaculum tepidum growth on biogenic S(0) as the sole photosynthetic electron donor. Environmental Microbiology 18, 28562867.CrossRefGoogle ScholarPubMed
Koblížek, M., Mlčoušková, J., Kolber, Z. & Kopecký, J. (2010). On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Archives of Microbiology 192, 4149.CrossRefGoogle ScholarPubMed
Rodriguez, J., Hiras, J. & Hanson, T. E. (2011). Sulfite oxidation in Chlorobaculum tepidum. Frontiers in Microbiology 2, 112.CrossRefGoogle ScholarPubMed
Vinyard, D. J., Ananyev, G. M. and Dismukes, G. C. (2013). Photosystem II: The reaction center of oxygenic photosynthesis. Annual Review of Biochemistry 82, 577606.CrossRefGoogle ScholarPubMed
Cohen, S. E. & Golden, S. S. (2015). Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews 79, 373385.CrossRefGoogle ScholarPubMed
Johnson, C. H., Zhao, C., Xu, Y. & Mori, T. (2017). Timing the day: what makes bacterial clocks tick?Nature Reviews Microbiology 15, 232242.CrossRefGoogle ScholarPubMed
Rust, M. J., Golden, S. S. & O’Shea, E. K. (2011). Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220223.CrossRefGoogle ScholarPubMed
Snijder, J., Schuller, J. M., Wiegard, A., Lössl, P., Schmelling, N., Axmann, I. M., Plitzko, J. M. Förster, F. & Heck, A. J. R. (2017). Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science 355, 11811184.CrossRefGoogle Scholar
Tseng, R., Goularte, N. F., Chavan, A., Luu, J., Cohen, S. E., Chang, Y-G., Heisler, J., Li, S., Michael, A. K., Tripathi, S., Golden, S. S., LiWang, A. & Partch, C. L. (2017). Structural basis of the day–night transition in a bacterial circadian clock. Science 355, 11741180.CrossRefGoogle Scholar
Joshi, G. S., Bobst, C. E. & Tabita, F. R. (2011). Unravelling the regulatory twist – regulation of CO2 fixation in Rhodopseudomonas palustris CGA010 mediated by atypical response regulator(s). Molecular Microbiology 80, 756771.CrossRefGoogle ScholarPubMed
Leroy, B., De Meur, Q., Moulin, C., Wegria, G. & Wattiez, R. (2015). New insight into the photoheterotrophic growth of the isocitrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. Microbiology 161, 10611072.CrossRefGoogle ScholarPubMed
Rae, B. D., Long, B. M., Badger, M. R. & Price, G. D. (2013). Functions, compositions, and evolution of the two types of carboxysomes: Polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiology and Molecular Biology Reviews 77, 357379.CrossRefGoogle ScholarPubMed
Tang, K.-H., Tang, Y. J. & Blankenship, R. E. (2011). Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Frontiers in Microbiology 2, 00165.CrossRefGoogle ScholarPubMed
Zhang, S. & Bryant, D. A. (2011). The tricarboxylic acid cycle in cyanobacteria. Science 334, 15511553.CrossRefGoogle ScholarPubMed
Bamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. (2014). Proteorhodopsin. Biochimica et Biophysica Acta 1837, 614625.CrossRefGoogle ScholarPubMed
Béjà, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N. & DeLong, E. F. (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 19021906.CrossRefGoogle ScholarPubMed
Dutta, S., Weiner, L. & Sheves, M. (2015). Cation binding to halorhodopsin. Biochemistry 54, 31643172.CrossRefGoogle ScholarPubMed
Grote, M., Engelhard, M. & Hegemann, P. (2014). Of ion pumps, sensors and channels – perspectives on microbial rhodopsins between science and history. Biochimica et Biophysica Acta 1837, 533545.CrossRefGoogle ScholarPubMed
Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M. & Pedrós-Alió, C. (2016). Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiology and Molecular Biology Reviews 80, 929954.CrossRefGoogle ScholarPubMed
Schertler, G. F. (2005). Structure of rhodopsin and the metarhodopsin I photointermediate. Current Opinion in Structural Biology 15, 408415.CrossRefGoogle ScholarPubMed
Spudich, J. L. (2006). The multitalented microbial sensory rhodopsins. Trends in Microbiology 14, 480487.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Photosynthesis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Photosynthesis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Photosynthesis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.011
Available formats
×