Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T02:49:31.158Z Has data issue: false hasContentIssue false

5 - The role of the pathologist in the diagnosis of cardiomyopathy: a personal view

Published online by Cambridge University Press:  06 January 2010

Nigel Kirkham
Affiliation:
Royal Victoria Infirmary, Newcastle
Neil A. Shepherd
Affiliation:
Gloucestershire Royal Hospital
Get access

Summary

INTRODUCTION

Primary cardiomyopathies are defined as diseases intrinsic to the myocardium associated with cardiac dysfunction leading to congestive heart failure, arrhythmia and sudden cardiac death. The primary cardiomyopathies are classified by their haemodynamic and morphological characteristics and include dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), arrhythmogenic right ventricular cardiomyopathy (ARVC) and unclassified cardiomyopathy [1], [2]. A familial cause has been shown in patients with DCM, HCM and ARVC. Advances in molecular genetics have led to the identification of single gene defects and candidate disease loci responsible for these cardiomyopathies as well as previously unclassified cardiomyopathies of unknown cause, such as isolated left ventricular non-compaction (LVNC). These advances, coupled with phenotype–genotype correlation analyses, have shown that the pathology of several types of cardiomyopathy encompasses a much broader morphological spectrum than previously anticipated. This chapter will focus on recent advances in our understanding of the pathology of the inherited cardiomyopathies and the role of the pathologist in the diagnosis of cardiomyopathy at autopsy and in endomyocardial biopsy specimens.

DILATED CARDIOMYOPATHY

Idiopathic DCM is the most common cause of congestive heart failure worldwide with an estimated prevalence in a general population of 36.5 cases per 100 000 [3]. It is characterised by progressive heart failure due to impaired contraction of the left or both ventricles accompanied by ventricular dilatation. Although the aetiology of idiopathic DCM is largely unknown [4], up to 35% of patients have familial disease [5].

Type
Chapter
Information
Progress in Pathology , pp. 101 - 134
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Richardson, P, McKenna, WJ, Bristow, Met al. Report of the 1995 WHO/ISFC Task Force on the definition and classification of cardiomyopathies. Circulation 1996; 93: 841–2.Google Scholar
Franz, W-M, Muller, OJ, Katus, HA. Cardiomyopathies: from genetics to the prospect of treatment. Lancet 2001; 358: 1627–37.CrossRefGoogle Scholar
Codd, MB, Sugrue, DD, Gersh, BJ, Melton, LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 1989; 80: 564–72.CrossRefGoogle Scholar
Kasper, EK, Agema, WRP, Hutchins, GM, Deckers, JW, Hare, JM, Baughman, KL. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol 1994; 23: 586–90.CrossRefGoogle ScholarPubMed
Grunig, E, Tasman, JA, Kucherer, Het al. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998; 31: 186–94.CrossRefGoogle ScholarPubMed
Towbin, JA, Bowles, NE. The failing heart. Nature 2002; 415: 227–33.CrossRefGoogle ScholarPubMed
Bowles, NE, Bowles, KR, Towbin, JA. The “final common pathway” hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz 2000; 25: 168–75.CrossRefGoogle ScholarPubMed
Sinagra, G, Di Lenarda, A, Brodsky, GL. Current perspective new insights into the molecular basis of familial dilated cardiomyopathy. Ital Heart J 2001; 2: 280–6.Google ScholarPubMed
Arbustini, E, Diegoli, M, Fasani, Ret al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 1998; 153: 1501–10.CrossRefGoogle ScholarPubMed
Barth, PG, Scholte, HR, Berden, JAet al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neuro Sci 1983; 62: 327–55.CrossRefGoogle ScholarPubMed
Muntoni, F, Cau, M, Ganau, Aet al. Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med 1993; 329: 921–5.CrossRefGoogle ScholarPubMed
Olson, TM, Illenberger, S, Kishimoto, NYet al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002; 105: 431–7.CrossRefGoogle ScholarPubMed
Olson, T, Kishimoto, N, Whitby, Fet al. Mutations that alter the surface charge of α-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 2001; 33: 723–32.CrossRefGoogle ScholarPubMed
Brodsky, GL, Muntoni, F, Miocic, S, Sinagra, G, Sewry, C, Mestroni, L. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 2000; 101: 473–6.CrossRefGoogle ScholarPubMed
Fatkin, D, MacRae, C, Sasaki, Tet al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999; 341: 1715–24.CrossRefGoogle ScholarPubMed
Bonne, G, Di Barletta, MR, Varnous, S, Becane, Het al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nat Genet 1999; 21: 285–8.CrossRefGoogle ScholarPubMed
Bione, S, D'Adamo, P, Maestrini, Eet al. A novel X-linked gene, G4.5 is responsible for Barth syndrome. Nat Genet 1996; 12: 385–9.CrossRefGoogle ScholarPubMed
D'Adamo, P, Fassone, L, Gedeon, Aet al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 1997; 61: 862–7.CrossRefGoogle ScholarPubMed
Vreken, P, Valianpour, F, Nijtmans, et al. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 2000; 279: 378–82.CrossRefGoogle ScholarPubMed
Bissler, JJ, Tsoras, HH, Goring, HHet al. Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle. Lab Invest 2002; 82: 335–44.CrossRefGoogle ScholarPubMed
Berko, BA, Swift M. X-linked dilated cardiomyopathy. N Engl J Med 1987; 316: 1186–91.CrossRefGoogle ScholarPubMed
Cox, GF, Kunkel, LM. Dystrophies and heart disease. Curr Opin Cardiol 1997; 12: 329–43.CrossRefGoogle ScholarPubMed
Kamisago, M, Sharma, SD, DePalma, SRet al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 2000; 343: 1688–96.CrossRefGoogle ScholarPubMed
Olson, TM, Michels, VV, Thibodeau, SNet al. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998; 280: 750–2.CrossRefGoogle ScholarPubMed
Tsubata, S, Bowles, KR, Vatta, Met al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 2000; 106: 655–62.CrossRefGoogle ScholarPubMed
Nigro, V, Sa Moreira, E, Piluso, Get al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat Genet 1996; 14: 195–8.CrossRefGoogle ScholarPubMed
Mogensen, J, Klausen, JC, Pedersen, AKet al. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 1999; 103: 39–43.CrossRefGoogle ScholarPubMed
Chin, TK, Perloff, JK, Williams, Ret al. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 1990; 82: 507–13.CrossRefGoogle ScholarPubMed
Ritter, M, Oechslin, E, Sutsch, Get al. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc 1997; 72: 26–31.CrossRefGoogle ScholarPubMed
Sedmera, D, Pexieder, T, Vuillemin, Met al. Developmental patterning of the myocardium. Anat Rec 2000; 258: 319–37.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Kenton, AB, Sanchez, X, Coveler, KJet al. Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, α-dystrobrevin and FK Binding Protein-12. Mol Genet and Metab 2004; 82: 162–6.CrossRefGoogle ScholarPubMed
Maron, BJ. Hypertrophic cardiomyopathy. A systematic review. JAMA 2002; 287: 1308–20.CrossRefGoogle ScholarPubMed
Maron, BJ, Gardin, JM, Flack, JM, Gidding, SS, Kurosaki, TT, Bild, . Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 1995; 92: 785–9.CrossRefGoogle Scholar
Thierfelder, L, Watkins, H, MacRae, Cet al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994; 77: 701–12.CrossRefGoogle ScholarPubMed
Marian, AJ, Salek, L, Lutucuta, S. Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med 2001; 92: 435–51.Google ScholarPubMed
Bonne, G, Carrier, L, Richard, P, Hainque, B, Schwarz, K. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 1998; 83: 580–93.CrossRefGoogle ScholarPubMed
Watkins, H, McKenna, WJ, Thierfelder, Let al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. New Engl J Med 1995; 332: 1058–64.CrossRefGoogle ScholarPubMed
Blair, E, Redwood, C, Ashrafian, Het al. Mutations in the γ2 sub-unit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 2001; 10: 1215–20.CrossRefGoogle Scholar
Santorelli, FM, Mak, SC, El-Schahawi, Met al. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA (Lys) gene (G8363A). Am J Hum Genet 1996; 58: 933–9.Google Scholar
Anan, R, Greve, G, Thierfelder, Let al. Prognostic implication of novel β cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 1994; 93: 280–5.CrossRefGoogle Scholar
Watkins, H, Rosenzweig, T, Hwang, DSet al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 1992; 326: 1106–14.CrossRefGoogle ScholarPubMed
Vikstrom, KL, Leinwand, . Contractile protein mutations and heart disease. Curr Opin Cell Biol 1996; 8: 97–105.CrossRefGoogle ScholarPubMed
Marian, AJ, Roberts, R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2001; 33: 655–70.CrossRefGoogle ScholarPubMed
Solomon, SD, Wolff, S, Watkins, Het al. Left ventricular hypertrophy and morphology in familial hypertrophic cardiomyopathy associated with mutations of the beta-myosin heavy chain gene. J Am Coll Cardiol 1993; 22: 498–505.CrossRefGoogle ScholarPubMed
Marian, AJ, Yu, QT, Workman, R, Greve, G, Roberts, R. Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 1993; 342: 1085–6.CrossRefGoogle ScholarPubMed
Brugada, R, Kelsey, W, Lechin, Met al. Role of candidate modifier genes on the phenotypic expression of hypertrophy in patients with hypertrophic cardiomyopathy. J Invest Med 1997; 45: 542–51.Google ScholarPubMed
Davies, MJ, McKenna, WJ. Hypertrophic cardiomyopathy – pathology and pathogenesis. Histopathology 1995; 26: 493–500.CrossRefGoogle ScholarPubMed
Hughes, SE. The pathology of hypertrophic cardiomyopathy. Histopathology 2004; 44: 412–27.CrossRefGoogle ScholarPubMed
Teare, D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J 1958; 20: 1–8.CrossRefGoogle ScholarPubMed
Falicov, RE, Resnekov, L, Bharati, S, Lev, M. Mid-ventricular obstruction: a variant of obstructive cardiomyopathy. Am J Cardiol 1976; 37: 432–7.CrossRefGoogle ScholarPubMed
Fighali, S, Krajcer, Z, Edelman, S, Leachman, RD. Progression of hypertrophic cardiomyopathy into a hypokinetic left ventricle: higher incidence in patients with midventricular obstruction. J Am Coll Cardiol 1987; 9: 288–94.CrossRefGoogle ScholarPubMed
Maron, BJ, Hauser, RG, Roberts, WC. Hypertrophic cardiomyopathy with left ventricular apical diverticulum. Am J Cardiol 1996; 77: 1263–5.CrossRefGoogle ScholarPubMed
Poetter, K, Jiang, H, Hassanzadeh, Set al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genet 1996; 13: 63–9.CrossRefGoogle ScholarPubMed
Olson, TM, Karst, ML, Whitby, FG. Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology. Circulation 2002; 105: 2337–40.CrossRefGoogle ScholarPubMed
Barbosa, MM, Coutinho, AHMotta MS, Fortes PR, Roza AZ, Good God EM. Apical hypertrophic cardiomyopathy: a study of 14 patients and their first degree relatives. Int J Cardiol 1996; 56: 41–51.CrossRefGoogle Scholar
Ando, H, Imaizumi, T, Urabe, YTakeshita A, Nakamura M. Apical segmental dysfunction in hypertrophic cardiomyopathy: subgroup with unique clinical features. J Am Coll Cardiol 1990; 16: 1579–88.CrossRefGoogle ScholarPubMed
Wigle, ED, Rakowski, H, Kimball, BP, Williams, WG. Hypertrophic cardiomyopathy: clinical spectrum and treatment. Circulation 1995; 92: 1680–92.CrossRefGoogle ScholarPubMed
Maron, BJ. Apical hypertrophic cardiomyopathy: the continuing saga. J Am Coll Cardiol 1990; 15: 91–3.CrossRefGoogle ScholarPubMed
Sakamoto, T, Tei, C, Murayama, M, Ichiyasu, H, Hada, Y. Giant, Twave inversion as a manifestation of asymmetrical apical hypertrophy (AAH) of the left ventricle: Echocardiographic and ultrasono-cardiotomographic study. Jpn Heart J 1976; 17: 611–29.CrossRefGoogle ScholarPubMed
Wigle, ED. Cardiomyopathy. The diagnosis of hypertrophic cardiomyopathy. Heart 2001; 86: 709–14.CrossRefGoogle Scholar
Webb, JG, Sasson, Z, Rakowski, H, Liu, P, Wigle, ED. Apical hypertrophic cardiomyopathy: clinical follow-up and diagnostic correlates. J Am Coll Cardiol 1990; 15: 83–90.CrossRefGoogle ScholarPubMed
Seiler, C, Jenni, R, Vassali, G, Turina, M, Hess, OM. Left ventricular chamber dilatation in hypertrophic cardiomyopathy: related variables and prognosis in patients with medical and surgical therapy. Br Heart J 1995; 74: 508–16.CrossRefGoogle ScholarPubMed
Hina, K, Kusachi, S, Iwasaki, Ket al. Progression of left ventricular enlargement in patients with hypertrophic cardiomyopathy: incidence and prognostic value. Clin Cardiol 1993; 16: 403–7.CrossRefGoogle ScholarPubMed
Maron, BJ, Wolfson, JK, Roberts, WC. Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol 1992; 70: 785–90.CrossRefGoogle ScholarPubMed
Maron, BJ, Roberts, WC. Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum of patients with hypertrophic cardiomyopathy. Circulation 1979; 59: 689–706.CrossRefGoogle ScholarPubMed
Maron, BJ, Anan, TJ, Roberts, WC. Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 1981; 63: 882–94.CrossRefGoogle ScholarPubMed
Shirani, J, Pick, R, Roberts, WC, Maron, BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 2000; 35: 36–44.CrossRefGoogle ScholarPubMed
Maron, BJ, Wolfson, JK, Epstein, SE, Roberts, WC. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 1986; 8: 545–57.CrossRefGoogle ScholarPubMed
Maron, BJ, Wolfson, JK, Epstein, SE, Roberts, WC. Morphologic evidence for “small vessel disease” in patients with hypertrophic cardiomyopathy. Z Kardiol 1987; 76 Suppl 3: 91–100.Google ScholarPubMed
Takemura, G, Takatsu, YFujiwara H. Luminal narrowing of coronary capillaries in human hypertrophic hearts: an ultrastructural morphometrical study using endomyocardial biopsy specimens. Heart 1998; 79: 78–85.CrossRefGoogle ScholarPubMed
Cannon, RO, Rosing, DR, Maron, BJet al. Myocardial ischaemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 1985; 71: 234–43.CrossRefGoogle ScholarPubMed
Iida, K, Yutani, C, Imakita, Met al. Comparison of percentage area of myocardial fibrosis and disarray in patients with classical form and dilated phase of hypertrophic cardiomyopathy. J Cardiol 1998; 32: 173–80.Google ScholarPubMed
Basso, C, Thiene, G, Corrado, D, Buja, G, Melacini, P, Nava, A. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 2000; 31: 988–98.CrossRefGoogle Scholar
Maron, BJ, Sato, N, Roberts, WC, Edwards, JE, Chandra, RS. Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum. Comparison of fetuses and infants with and without congenital heart disease and patients with hypertrophic cardiomyopathy. Circulation 1979; 60: 685–96.CrossRefGoogle ScholarPubMed
Bulkley, BH, Weisfeldt, ML, Hutchins, GM. Asymmetric septal hypertrophy and myocardial fiber disarray. Features of normal, developing and malformed hearts. Circulation 1977; 56: 292–8.CrossRefGoogle ScholarPubMed
Burch, M, Mann, JM, Sharland, Met al. Myocardial disarray in Noonan syndrome. Br Heart J 1992; 68: 586–8.CrossRefGoogle ScholarPubMed
Brumback, RA, Panner, BJ, Kingston, WJ. The heart in Friedreich's ataxia. Report of a case. Arch Neurol 1986; 43: 189–92.CrossRefGoogle ScholarPubMed
Tartaglia, M, Mehler, EL, Goldberg, Ret al. Mutations in PTPN11 encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465–8.CrossRefGoogle ScholarPubMed
Rotig, A, Sidi, D, Munnich, Aet al. Molecular insights into Friedreich's ataxia and antioxidant-based therapies. Trends Mol Med 2002; 8: 221–4.CrossRefGoogle ScholarPubMed
Bel-Kahn, J. Muscle fibre disarray in common heart diseases. Am J Cardiol 1977; 40: 355–64.CrossRefGoogle Scholar
St John Sutton, MG, Lie, JT, Anderson, KR, O'Brien, PC, Frye, RL. Histopathological specificity of hypertrophic obstructive cardiomyopathy. Myocardial fibre disarray and myocardial fibrosis. Br Heart J 1980; 44: 433–43.CrossRefGoogle ScholarPubMed
Valente, M, Calabrese, F, Thiene, Get al. In vivo evidence of apoptosis in arrhythmogenic right ventricular cardiomyopathy. Am J Pathol 1998; 152: 479–84.Google ScholarPubMed
Mallat, Z, Tedgui, A, Fontaliran, F, Frank, F, Durigon, M, Fontaine, G. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996; 335: 1190–6.CrossRefGoogle ScholarPubMed
Bowles, NE, Ni, J, Marcus, Fet al. The detection of cardiotropic viruses in the myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2002; 39: 892–5.CrossRefGoogle ScholarPubMed
D'Amati, G, di Gioia, CRT, Giordano, C, Gallo, P. Myocyte transdifferentiation. A possible pathogenetic mechanism for arrhythmogenic right ventricular cardiomyopathy. Circulation 2000; 124: 287–90.Google ScholarPubMed
Corrado, D, Fontaine, G, Marcus, FIet al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy; need for an international registry. Study group on arrhythmogenic right ventricular dysplasia/cardiomyopathy of the working groups of myocardial and pericardial disease and arrhythmias of the European Society of Cardiology and of the Scientific Council of Cardiomyopathies of the World Heart Federation. Circulation 2000; 101: E101–16.CrossRefGoogle Scholar
Nava, A, Thiene, G, Canciani, Bet al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol 1988; 12: 1222–8.CrossRefGoogle ScholarPubMed
Nava, A, Bauce, B, Basso, Cet al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 2000; 36: 2226–33.CrossRefGoogle ScholarPubMed
Tiso, N, Stephan, DA, Nava, Aet al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 2001; 10: 189–94.CrossRefGoogle Scholar
Rampazzo, A, Nava, A, Malacrida, Set al. Mutation in human desmoplakin binding domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2002; 71: 1200–6.CrossRefGoogle ScholarPubMed
McKoy, G, Protonotarios, N, Crosby, Aet al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000; 355: 2119–24.CrossRefGoogle Scholar
Alcalai, R, Metzger, S, Rosenheck, Set al. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder and woolly hair. J Am Coll Cardiol 2003; 42: 319–27.CrossRefGoogle ScholarPubMed
Bauce, B, Rampazzo, A, Basso, Cet al. Screening for ryanodine receptor type 2 mutations in families with effort-induced polymorphic ventricular arrhythmias and sudden death. Early diagnosis of asymptomatic carriers. J Am Coll Cardiol 2002; 40: 341–9.CrossRefGoogle ScholarPubMed
Bauce, B, Nava, A, Rampazzo, Aet al. Familial effort polymorphic ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy map to chromosome 1q42–43. Am J Cardiol 2000; 85: 573–9.CrossRefGoogle ScholarPubMed
Priori, S, Napolitano, C, Tiso, Net al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196–200.CrossRefGoogle ScholarPubMed
Laitinen, P, Brown, K, Piipo, Ket al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001; 103: 485–90.CrossRefGoogle ScholarPubMed
Swan, H, Piippo, K, Viitasalo, Met al. Arrhythmic disorder mapped to chromosome 1q42–q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol 1999; 34: 2035–42.CrossRefGoogle ScholarPubMed
Coonar, AS, Protonoarius, N, Tsatsopoulou, Aet al. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation 1998; 97: 2049–58.CrossRefGoogle ScholarPubMed
Hughes, SE, McKenna, WJ. New insights into the pathology of inherited cardiomyopathy. Heart 2005; 91: 257–64.CrossRefGoogle ScholarPubMed
Ko, KS, Arora, PD, McCulloch, CAG. Cadherins mediate intracellular mechanical signalling in fibroblasts by activation of stretch-sensitive calcium permeable channels. J Biol Chem 2001; 276: 35967–77.CrossRefGoogle Scholar
Petroff, MGV, Kim, SH, Pepe, Set al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 2001; 3: 867–73.CrossRefGoogle ScholarPubMed
Norgett, EE, Hatsell, SJ, Carvajal-Huerta, Let al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000; 9: 2761–6.CrossRefGoogle ScholarPubMed
Kaplan, SR, Gard, JJ, Carvajal-Huerta, L, Ruiz-Cabezas, JC, Thiene G, Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc Pathol 2004; 13: 26–32.CrossRefGoogle ScholarPubMed
Marcus, FI, Fontaine, G, Guiraudon, Get al. Right ventricular dysplasia. A report of 24 adult cases. Circulation 1982; 65: 384–98.CrossRefGoogle ScholarPubMed
Corrado, D, Basso, C, Thiene, G. Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis and treatment. Heart 2000; 83: 588–95.CrossRefGoogle Scholar
Thiene, G, Nava, A, Corrado, Det al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 1988; 318: 129–33.CrossRefGoogle ScholarPubMed
Basso, C, Thiene, G, Corrado, Det al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy or myocarditis?Circulation 1996; 94: 983–91.CrossRefGoogle ScholarPubMed
Corrado, D, Basso, C, Thiene, Get al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 1997; 30: 1512–20.CrossRefGoogle ScholarPubMed
Gallo, P, D'Amati, G, Pellicia, F. Pathologic evidence of extensive left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy. Hum Pathol 1992; 23: 948–52.CrossRefGoogle ScholarPubMed
Pinamonti, B, Sinagra, GF, Salvi, Aet al. Left ventricular involvement in right ventricular dysplasia. Am Heart J 1992; 123: 711–24.CrossRefGoogle ScholarPubMed
Miani, D, Pimamonti, B, Bussani, R, Silvestri, F, Sinagra, G, Camerini, F. Right ventricular dysplasia: a clinical and pathological study of two families with left ventricular involvement. Br Heart J 1993; 69: 151–7.CrossRefGoogle ScholarPubMed
D'Amati, G, Leone, O, di Gioa, CRet al. Arrhythmogenic right ventricular cardiomyopathy: clinicopathologic correlation based on a revised definition of pathologic patterns. Hum Pathol 2001; 32: 1078–86.CrossRefGoogle ScholarPubMed
Burke, AP, Farb, A, Tashko, Get al. Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases?Circulation 1998; 97: 1571–80.CrossRefGoogle ScholarPubMed
Fontaliran, F, Fontaine, G, Fillette, F, Aouate, P, Chomette, G, Grosgogeat, Y. Nosologic frontiers of arrhythmogenic dysplasia. Quantitative variations of normal adipose tissue of the right heart ventricle. Arch Mal Coeur Vaiss 1991; 84: 33–8.Google ScholarPubMed
Shirani, J, Berezowski, K, Roberts, WC. Quantitative measurement of normal adipose and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance and its effect on electrocardiographic QRS voltage. Am J Cardiol 1995; 76: 414–18.CrossRefGoogle ScholarPubMed
Pasquale, CG, Heddle, WF. Left sided arrhythmogenic ventricular dysplasia in siblings. Heart 2001; 86: 128–30.CrossRefGoogle ScholarPubMed
Michalodimitrakis, M, Papadomanolakis, A, Stiakakis, J, Kanaki, K. Left side right ventricular cardiomyopathy. Med Sci Law 2002; 42: 313–17.CrossRefGoogle ScholarPubMed
Suzuki, H, Sumiyoshi, M, Kawai, Set al. Arrhythmogenic right ventricular cardiomyopathy with an initial manifestation of severe left ventricular impairment and normal contraction of the right ventricle. Jpn Circ J 2000; 64: 209–13.CrossRefGoogle ScholarPubMed
Collett, BA, Davis, GJ, Rohr, WB. Extensive fibrofatty infiltration of the left ventricle in two cases of sudden cardiac death. J Forensic Sci 1994; 39: 1182–7.CrossRefGoogle ScholarPubMed
Shirani, J, Roberts, WC. Subepicardial myocardial lesions. Am Heart J 1993; 125: 1346–52.CrossRefGoogle ScholarPubMed
Klein AL, Scalia GM. In Textbook of Cardiovascular Medicine, Topol, EJ ed.) Lippincott-Raven Publishers, Philadelphia, 1998.Google Scholar
Kushwaha, SS, Fallon, JT, Fuster, V. Restrictive cardiomyopathy. N Engl J Med 1997; 336: 267–76.CrossRefGoogle ScholarPubMed
Child, JS, Perloff, JK. The restrictive cardiomyopathies. Cardiol Clin 1988; 6: 289–316.Google ScholarPubMed
Siegel, RJ, Shah, PK, Fishbein, MC. Idiopathic restrictive cardiomyopathy. Circulation 1984; 70: 165–9.CrossRefGoogle ScholarPubMed
Denfield, SW, Rosenthal, G, Gajarski, RJet al. Restrictive cardiomyopathies in childhood. Etiologies and natural history. Tex Heart Inst J 1997; 24: 38–44.Google ScholarPubMed
Benotti, JR, Grossman, W, Cohn, PF. Clinical profile of restrictive cardiomyopathy. Circulation 1980; 61: 1206–12.CrossRefGoogle ScholarPubMed
Cooke, RA, Chambers, JB, Curry, PV. Noonan's cardiomyopathy: a non-hypertrophic variant. Br Heart J 1994; 71: 561–5.CrossRefGoogle ScholarPubMed
Mogensen, J, Kubo, T, Duque, Met al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 2003; 111: 209–16.CrossRefGoogle ScholarPubMed
Spry, CJ, Take, M, Tai, PC. Eosinophilic disorders affecting the myocardium and endocardium: a review. Heart Vessels Suppl 1985; 1: 240–2.CrossRefGoogle ScholarPubMed
Davies, JNP. Endomyocardial necrosis. A heart disease of obscure aetiology in Africans. MD thesis, Bristol University, 1948.
Parrillo, JE. Heart disease and the eosinophil. N Engl J Med 1990; 323: 1560–1.CrossRefGoogle ScholarPubMed
Gupta, PN, Valiathan, MS, Balakrishnan, KGet al. Clinical course of endomyocardial fibrosis. Br Heart J 1989; 62: 450–4.CrossRefGoogle ScholarPubMed
Chopra, P, Narula, J, Talwar, KKet al. Histomorphologic characteristics of endomyocardial fibrosis: an endomyocardial biopsy study. Hum Pathol 1990; 21: 613–16.CrossRefGoogle Scholar
Mady, C, Pereira Barretto, AC, Oliveira, SAet al. Effectiveness of operative and nonoperative therapy of endomyocardial fibrosis. Am J Cardiol 1989; 63: 1281–2.CrossRefGoogle ScholarPubMed
Oliveira, SA, Pereira Barretto, AC, Mady, Cet al. Surgical treatment of endomyocardial fibrosis: a new approach. J Am Coll Cardiol 1990; 16: 1246–51.CrossRefGoogle ScholarPubMed
Andy, JJ. Aetiology of endomyocardial fibrosis (EMF). West Afr J Med 2001; 20: 199–207.Google Scholar
Roberts, WC, Buja, LM, Ferrans, VJ. Loeffler's fibroplastic parietal endocarditis, eosinophilic leukaema, and Davies' endomyocardial fibrosis: the same disease at different stages?Pathol Microbiol (Basel) 1970; 35: 90–5.Google Scholar
Davies, J, Spry, CJ, Vijayaraghavan, G, Souza, JA. A comparison of the clinical and cardiological features of endomyocardial disease in temperate and tropical regions. Postgrad Med J 1983; 59: 179–85.CrossRefGoogle ScholarPubMed
Mello, , Liapis, H, Jureidini, Set al. Cardiac localization of eosinophil-granule major basic protein in acute necrotizing myocarditis. N Engl J Med 1990; 323: 1542–5.Google Scholar
Spry, CJ, Tai, PC. Studies on blood eosinophils. II. Patients with Loeffler's cardiomyopathy. Clin Exp Immunol 1976; 24: 423–34.Google Scholar
Bigoni, R, Cuneo, A, Roberti, MGet al. Cytogenetic and molecular cytogenetic characterization of 6 new cases of idiopathic hypereosinophilic syndrome. Haematologica 2000; 85: 486–91.Google ScholarPubMed
Weinberg, BA, Conces, DJ Jr., Waller, BF. Cardiac manifestations of noncardiac tumours. Part I: Direct Effects. Clin Cardiol 1989; 12: 289–96.CrossRefGoogle ScholarPubMed
Klein, AL, Oh, JK, Miller, FAet al. Two-dimensional and Doppler echocardiographic assessment of infiltrative cardiomyopathy. J Am Soc Echocardiogr 1988; 1: 48–59.CrossRefGoogle ScholarPubMed
Kyle, RA. Amyloidosis. Circulation 1995; 91: 1269–71.CrossRefGoogle ScholarPubMed
Westermark, P, Bergstrom, J, Solomon, A, Murphy, C, Sletten, K. Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid 2003; 10 Suppl I: 48–54.Google ScholarPubMed
Cornwell GG, III, Murdoch, W, Kyle, RA, Westermark, P, Pitkanen, P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med 1983; 75: 618–23.CrossRefGoogle ScholarPubMed
Pitkanen, P, Westermark, P, Cornwell, GG III.Senile systemic amyloidosis. Am J Path 1984; 117: 391–9.Google ScholarPubMed
Hamidi, Asl L, Liepnieks, JJ, Hamidi Asl, Ket al. Hereditary amyloid cardiomyopathy caused by a variant apolipprotein A1. Am J Pathol 1999; 154: 221–7.CrossRefGoogle Scholar
Arbustini, E, Gavazzi, A, Merlini, G. Fibril-forming proteins: the amyloidosis. New hopes for a disease that cardiologists must know. Ital Heart J 2002; 3: 590–7.Google ScholarPubMed
Yazaki, M, Liepniks, JJ, Barats, MS, Cohen, AH, Benson, MD. Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int 2003; 64: 11–16.CrossRefGoogle ScholarPubMed
Saraiva, MJ. Transythretin mutations in health and disease. Hum Mutat 1995; 5: 191–6.Google Scholar
Saito, F, Nakazato, M, Akiyama, Het al. A case of late onset cardiac amyloidosis with a new transthyretin variant (Lysine 92). Hum Pathol 2001; 32: 237–9.CrossRefGoogle Scholar
Tawara, S, Nakazato, M, Kangawa, Ket al. Identification of amyloid prealbumin variant in familial amyloidotic polyneuropathy (Japanese type). Biochem Biophys Res Commun 1983; 116: 880–8.CrossRefGoogle Scholar
Saraiva, MJM, Costa, PP, Birken, S, Goodman, DS. Presence of an abnormal transthyretin (prealbumin) in Portugese patients with familial amyloidotic polyneuropathy. Trans Assoc Am Phys 1983; 96: 261–70.Google Scholar
Saraiva, MJ, Almeida, M, R, Sherman, Wet al. A new transthyretin mutation associated with amyloid cardiomyopathy. Am J Hum Genet 1992; 50: 1027–30.Google ScholarPubMed
Magnus, JH, Stenstad, K, Kolset, SOet al. Glycosaminoglycans in extracts of cardiac amyloid fibrils from familial amyloid cardiomyopathy of Danish origin related to variant transthyretin Met 111. Scand J Immunol 1991; 34: 63–9.CrossRefGoogle ScholarPubMed
Roberts, WC, Waller, BF. Cardiac amyloidosis causing cardiac dysfunction: analysis of 54 necropsy patients. Am J Cardiol 1983; 52: 137–46.CrossRefGoogle ScholarPubMed
Booth, DR, Tan, SY, Hawkins, PNet al. A novel variant of transthyretin, 59Thr-Lys, associated with autosomal dominant cardiac amyloidosis in an Italian family. Circulation 1995; 91: 962–7.CrossRefGoogle Scholar
Smith, TJ, Kyle, RA, Lie, JT. Clinical significance of histopathologic patterns of cardiac amyloidosis. Mayo Clin Proc 1984; 59: 547–55.CrossRefGoogle ScholarPubMed
Newman, LS, Rose, CS, Maier, . Sarcoidosis. New Engl J Med 1997; 336: 1224–34.CrossRefGoogle ScholarPubMed
Sharma, OP, Maheshwari, A, Thaker, K. Myocardial sarcoidosis. Chest 1993; 103: 253–8.CrossRefGoogle ScholarPubMed
Silverman, KJ, Hutchins, GM, Bulkley, BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 1978; 58: 1204–11.CrossRefGoogle ScholarPubMed
Perry, A, Vuitch, F. Causes of death in patients with sarcoidosis: a morphologic study of 38 autopsies with clinicopathologic correlations. Arch Pathol Lab Med 1995; 119: 1767–72.Google ScholarPubMed
Hauser, SC. Hemochromatosis and the heart. Heart Dis Stroke 1993; 2: 487–91.Google ScholarPubMed
Zaahl, MG, Merryweather-Clarke, AT, Kotze, MJet al. Analysis of genes implicated in iron regulation in individuals presenting with primary iron overload. Hum Genet 2004; 115: 409–17.CrossRefGoogle ScholarPubMed
Olson, LJ, Edwards, WD, McCall, JTet al. Cardiac iron deposition in idiopathic hemochromatosis: histologic and analytic assessment of 14 hearts from autopsy. Am Coll Cardiol 1987; 10: 1239–43.CrossRefGoogle ScholarPubMed
Cecchetti, G, Binda, A, Piperno, Aet al. Cardiac alterations in 36 consecutive patients with idiopathic hemochromatosis: polygraphic and echocardiographic evaluation. Eur Heart J 1991; 12: 224–30.CrossRefGoogle ScholarPubMed
Glazier, JJ, Mortimer, G, Daly, KM. A clinical role for right ventricular endomyocardial biopsy. Ir Med J 1989; 82: 153–5.Google ScholarPubMed
Hoshino, T, Fujiwara, H, Kawai, C, Hamashima, Y. Diagnostic value of disarray in endomyocardial biopsy specimens in hypertrophic cardiomyopathy: a critical report based on distribution of disarray in the subendocardial region of autopsied hearts. Jpn Circ J 1982; 46: 1281–91.CrossRefGoogle ScholarPubMed
Tazelaar, HD, Billingham, ME. The surgical pathology of hypertrophic cardiomyopathy. Arch Pathol Lab Med 1987; 111: 257–60.Google ScholarPubMed
Linhart, A, Palecek, T, Bultas, Jet al. New insights in cardiac structural changes in patients with Fabry's disease. Am Heart J 2000; 139: 1101–8.CrossRefGoogle ScholarPubMed
Sachdev, B, Takenaka, T, Teraguchi, Het al. Prevalence of Anderson–Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 2002; 105: 1407–11.CrossRefGoogle ScholarPubMed
Beer, G, Reinecke, P, Gabbert, HE, Hort, W, Kuhn, H. Fabry disease in patients with hypertrophic cardiomyopathy (HCM). Z Kardiol 2002; 91: 992–1002.CrossRefGoogle Scholar
Ommen, SR, Nishimura, RA, Edwards, WD. Fabry disease: a mimic for obstructive hypertrophic cardiomyopathy?Heart 2003; 89: 929–30.CrossRefGoogle ScholarPubMed
Nakao, S, Takenaka, T, Maeda, Met al. An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med 1995; 333: 288–93.CrossRefGoogle ScholarPubMed
Nagueh, SF. Fabry disease. Heart 2003; 89: 819–20.CrossRefGoogle ScholarPubMed
Frustaci, A, Chimenti, C, Ricci, Ret al. Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N Engl J Med 2001; 345: 25–32.CrossRefGoogle ScholarPubMed
Oh, JK, Tajik, AJ, Edwards, WDet al. Dynamic left ventricular outflow tract obstruction in cardiac amyloidosis detected by continuous-wave Doppler echocardiography. Am J Cardiol 1987; 59: 1008–10.CrossRefGoogle ScholarPubMed
Hoshii, Y, Takahashi, M, Ishihara, T, Uchino, F. Immunohistochemical classification of 140 autopsy cases with systemic amyloidosis. Pathol Int 1994; 44: 352–8.CrossRefGoogle ScholarPubMed
Olson, LJ, Gertz, MA, Edwards, WDet al. Senile cardiac amyloidosis with myocardial dysfunction. Diagnosis by endomyocardial biopsy and immunohistochemistry. N Engl J Med 1987; 317: 738–42.CrossRefGoogle ScholarPubMed
Nakamura, M, Satoh, M, Kowada, Set al. Reversible restrictive cardiomyopathy due to light-chain deposition disease. Mayo Clin Proc 2002; 77: 193–6.CrossRefGoogle ScholarPubMed
Hosenpud, JD, DeMarco, T, Frazier, OHet al. Progression of systemic disease and reduced long-term survival in patients with cardiac amyloidosis undergoing heart transplantation. Follow-up results of a multicenter survey. Circulation 1991; 84(III): 338–43.Google ScholarPubMed
Holmgren, G, Ericzon, BG, Groth, CGet al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 1993; 341: 1113–16.CrossRefGoogle ScholarPubMed
Ikeda, S, Nakazato, M, Ando, Yet al. Familial transthretin-type amyloid polyneuropathy in Japan. Clinical and genetic heterogeneity. Neurology 2002; 58: 1001–7.CrossRefGoogle ScholarPubMed
Uemera, A, Morimoto, S, Hiramitsu, S, Kato, Y, Ito, T, Hishida H. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am Heart J 1999; 138: 299–302.CrossRefGoogle Scholar
Angelini, A, Basso, C, Nava, A, Thiene, G. Endomyocardial biopsy in arrhythmogenic right ventricular cardiomyopathy. Am Heart J 1996; 132: 203–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×