Published online by Cambridge University Press: 05 November 2012
Near-field optical probes, such as laser-irradiated apertures or metal tips, are the key components of the near-field microscopes discussed in the previous chapter. No matter in which configuration a probe is used, the achievable resolution depends on how well the probe is able to confine the optical energy. This chapter discusses light propagation and light confinement in different probes. Fundamental properties are discussed and an overview of fabrication methods is provided. The most common optical probes are (1) uncoated tapered glass fibers, (2) aperture probes, and (3) pointed metal/semiconductor structures and resonant-particle probes. The reciprocity theorem of electromagnetism states that a signal remains unchanged upon exchange of source and detector (see Chapter 2.13). We therefore consider all probes as localized sources of light.
Light propagation in a conical transparent dielectric probe
Transparent dielectric probes can be modeled as infinitely long glass rods with a conical and pointed end. The analytically known HE11 waveguide mode, incident from the infinite cylindrical glass rod and polarized in the x-direction, excites the field in the conical probe. For weakly guiding fibers, the modes are usually designated LP (linearly polarized). In this case, the fundamental LP01 mode corresponds to the HE11 mode. The tapered, conical part of the probe may be represented as a series of disks with decreasing diameters and infinitesimal thicknesses. At each intersection, the HE11 field distribution adapts to the distribution appropriate for the next slimmer section.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.