Published online by Cambridge University Press: 06 July 2010
The general principles of amplification and oscillation in semiconductor lasers are the same as those in solid state and gas lasers, as discussed in Chapter 6. A negative χ″ is obtained in an active region via induced transitions of the electrons. When the gain per unit distance is larger than the propagation loss, laser amplification is obtained. In order to achieve laser oscillation, the active material is enclosed in a cavity. Laser oscillation begins when the gain exceeds the losses, including the output. However, the details are quite different. In this chapter, the discussion on semiconductor lasers will use much of the analyses already developed in Chapters 5 and 6; however, the differences will be emphasized.
In semiconductor lasers, free electrons and holes are the particles that undertake stimulated emission and absorption. How such free carriers are generated, transported and recombined has been discussed extensively in the literature. We note here, in particular, that free electrons and holes are in a periodic crystalline material. The energy levels of electrons and holes in such a material are distributed within conduction and valence bands. The distribution of energy states within each band depends on the specific semiconductor material and its confinement within a given structure. For example, it is different for a bulk material (a three-dimensional periodic structure) and for a quantum well (a two-dimensional periodic structure).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.