Published online by Cambridge University Press: 03 February 2020
Polarized targets need continuous cooling of large heat load during DNP at temperatures around or below 1 K. This can be achieved by continuous-flow refrigerators based on the evaporation of liquid 4He or 3He, or on the dilution of 3He by 4He. The refrigerator components have unusual requirements due to the large helium mass flow rates and to the demand of long uninterrupted runs of operation. We describe first the heat transfer mechanisms from the solid target material to the coolant fluid, and then evaluate the various cooling cycles in detail. The heat loads, ranging from some W/cm3 to some tens of μW/cm3, and the choice of the cooling method, are evaluated, before discussing the design of other cryogenic parts of the apparatus, including the precooling heat exchangers, thermometry and other instrumentation, and the pump and gas purification systems.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.