Published online by Cambridge University Press: 05 July 2014
Number theory deals with the properties of the positive integers, which were probably the first mathematical objects discovered by human beings. In this chapter we shall initially study the factorization of positive integers into primes, a basic result called the fundamental theorem of arithmetic. The possibly exaggerated title ‘Prelude’ refers to the second section, where we introduce Chebyshev's theorem on the distribution of prime numbers. This result is remarkable and yet rather easy to understand, and it may encourage the reader to approach more advanced topics in number theory.
For the first part of this book we have used various references, including [3, 4, 6, 8, 9, 42, 46, 63, 68, 72, 76, 90, 93, 96, 101, 103, 108, 119, 120, 127, 128, 136, 145, 151, 165].
Prime numbers and factorization
We shall denote by ℕ = {1, 2, …} the set of natural numbers and by ℤ the set of integers. We shall say that 0 ≠ b ∈ ℤ divides a ∈ ℤ if there exists c ∈ ℤ such that a = bc. In this case we shall write b | a. If b does not divide a we shall write b ∤ a.
We know that, given a ∈ ℤ and b ∈ ℕ, there exist (unique) q, r ∈ ℤ such that a = bq + r, with 0 ≤ r < b. We present the following consequence.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.