[1] T. van, Aardenne-Ehrenfest, Proof of the impossibility of a just distribution of an infinite sequence of points over an interval, Proc. Kon. Ned. Akad. v. Wetensch 48 (1945), 266–271.
[2] T. van, Aardenne-Ehrenfest, On the impossibility of a just distribution, Proc. Kon. Ned. Akad. v. Wetensch 52 (1949), 734–739.
[3] W.W., Adams, L.J., Goldstein, Introduction to number theory, Prentice-Hall, 1976.
[4] J., Agnew, Explorations in number theory, Contemporary Undergraduate Mathematics Series, Brooks/Cole, 1972.
[5] W.R., Alford, A., Granville, C., Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139 (1994), 703–722.
[6] G.E., Andrews, Number theory, Dover Publications, 1994.
[7] G.E., Andrews, S.B., Ekhad, D., Zeilberger, A Short Proof of Jacobi's formula for the number of representations of an integer as a sum of four squares, Amer. Math. Monthly 100 (1993), 274–276.
[8] T.M., Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1998.
[9] A., Baker, A concise introduction to the theory of numbers, Cambridge University Press, 1984.
[10] P.T., Bateman, H.G., Diamond, Analytic number theory. An introductory course, World Scientific Publishing, 2004.
[11] D., Bayer, P., Diaconis, Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2 (1992), 294–313.
[12] J., Beck, Balanced two-colourings of finite sets in the square I, Combinatorica 1 (1981), 50–64.
[13] J., Beck, Irregularities of distribution I, Acta Math. 159 (1987), 1–49.
[14] J., Beck, W.W.L., Chen, Irregularities of distribution, Cambridge Tracts in Mathematics, 89, Cambridge University Press, 2008.
[15] J., Beck, W.W.L., Chen, Note on irregularities of distribution II, Proc. London Math. Soc. 61 (1990), 251–272.
[16] D.R., Bellhouse, Area estimation by point counting techniques, Biometrics 37 (1981), 303–312.
[17] F., Benford, The law of anomalous numbers, Proc. Am. Philos. Soc. 78 (1938), 551–572.
[18] A., Berger, T.P., Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, Math. Intelligencer 33 (2011), 85–91.
[19] D., Bilyk, Roth's orthogonal functions method in discrepancy theory and some new connections, in ‘A panorama of discrepancy theory’ (W.W.L., Chen, A., Sri-vastav, G., Travaglini - Editors), Lecture Notes in Mathematics, Springer, to appear.
[20] S., Bochner, The role of mathematics in the rise of science, Princeton University Press, 1966.
[21] E., Borel, Les probabilités denombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271.
[22] L., Brandolini, W.W.L., Chen, L., Colzani, G., Gigante, G., Travaglini, Discrepancy and numerical integration in Sobolev spaces on metric measures spaces, preprint.
[23] L., Brandolini, W.W.L., Chen, G., Gigante, G., Travaglini, Discrepancy for randomized Riemann sums, Proc. Amer. Math. Soc. 137 (2009), 3177–3185.
[24] L., Brandolini, C., Choirat, L., Colzani, G., Gigante, R., Seri, G., Travaglini, Quadrature rules and distribution of points on manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci., to appear
[25] L., Brandolini, L., Colzani, G., Gigante, G., Travaglini, On the Koksma-Hlawka inequality, J. Complexity 29 (2013), 158–172.
[26] L., Brandolini, L., Colzani, G., Gigante, G., Travaglini, A Koksma-Hlawka inequality for simplices, in ‘Trends in harmonic analysis’ (M., Picardello - Editor), Springer INd AM Series, Springer, 2013, 33–46.
[27] L., Brandolini, L., Colzani, A., Iosevich, A., Podkorytov, G., Travaglini, Geometry of the Gauss map and lattice points in convex domains, Mathematika 48 (2001), 107–117.
[28] L., Brandolini, L., Colzani, G., Travaglini, Average decay of Fourier transforms and integer points in polyhedra, Ark. Mat. 35 (1997), 253–275.
[29] L., Brandolini, G., Gigante, S., Thangavelu, G., Travaglini, Convolution operators deined by singular measures on the motion group, Indiana Univ. Math. J. 59 (2010), 1935–1945.
[30] L., Brandolini, G., Gigante, G., Travaglini, Irregularities of distribution and average decay of Fourier transforms, in ‘A panorama of discrepancy theory’ (W.W.L., Chen, A., Srivastav, G., Travaglini – Editors), Lecture Notes in Mathematics, Springer, to appear
[31] L., Brandolini, A., Greenleaf, G., Travaglini, Lp – Lp′ estimates for overdetermined Radon transforms, Trans. Amer. Math. Soc. 359 (2007), 2559–2575.
[32] L., Brandolini, S., Hofmann, A., Iosevich, Sharp rate of average decay of the Fourier transform of a bounded set, Geom. Funct. Anal. 13 (2003), 671–680.
[33] L., Brandolini, A., Iosevich, G., Travaglini, Spherical means and the restriction phenomenon, J. Fourier Anal. Appl. 7 (2001), 359–372.
[34] L., Brandolini, A., Iosevich, G., Travaglini, Planar convex bodies, Fourier transform, lattice points, and irregularities of distribution, Trans. Amer. Math. Soc. 355 (2003), 3513–3535.
[35] L., Brandolini, M., Rigoli, G., Travaglini, Average decay of Fourier transforms and geometry ofconvexsets, Rev. Mat. Iberoamer. 14 (1998), 519–560.
[36] L., Brandolini, G., Travaglini, Pointwise convergence of Fejér type means, Tohoku Math. J. 49 (1997), 323–336.
[37] L., Brandolini, G., Travaglini, La legge di Benford, Emmeciquadro 45 (2012).
[38] J., Bruna, A., Nagel, S., Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. 127 (1988), 333–365.
[39] F., Cantelli, Sulla probabilità come limite della frequenza, Atti Accad. Naz. Lincei 26 (1917), 39–45.
[40] J.W.S., Cassels, On the sums of powers of complexnumbers, Acta Math. Hungar. 7 (1957), 283–289.
[41] D.G., Champernowne, The construction of decimal normal in the scale of ten, J. London Math. Soc. 8 (1933), 254–260.
[42] K., Chandrasekharan, Introduction to analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 148, Springer, 1968.
[43] B., Chazelle, The discrepancy method. Randomness and complexity, Cambridge University Press, 2000.
[44] W.W.L., Chen, On irregularities of distribution III, J. Austr. Math. Soc. 60 (1996), 228–244.
[45] W.W.L., Chen, Lectures on irregularities of point distribution, unpublished, 2000.
[46] W.W.L., Chen, Elementary number theory, unpublished, 2003.
[47] W.W.L., Chen, Fourier techniques in the theory of irregularities of point distribution, in ‘Fourier analysis and convexity’ (L., Brandolini, L., Colzani, A., Iosevich, G., Travaglini - Editors), Birkhauser, 2004, 59–82.
[48] W.W.L., Chen, M., Skriganov, Upper bounds in irregularities of point distribution, in “Apanorama of discrepancy theory” (W.W.L., Chen, A., Srivastav, G., Travaglini – Editors), Lecture Notes in Mathematics, Springer, to appear.
[49] W.W.L., Chen, A., Srivastav, G., Travaglini - Editors, A panorama of discrepancy theory, Lecture Notes in Mathematics, Springer, to appear.
[50] W.W.L., Chen, G., Travaglini, Discrepancy with respect to convex polygons, J. Complexity 23 (2007), 662–672.
[51] W.W.L., Chen, G., Travaglini, Deterministic and probabilistic discrepancies, Ark. Mat. 47 (2009), 273–293.
[52] W.W.L., Chen, G., Travaglini, Some of Roth's ideas in discrepancy theory, in ‘Analytic number theory: essays in honour of Klaus Roth’ (W.W.L., Chen, W.T., Gowers, H., Halberstam, W.M., Schmidt, R.C., Vaughan – Editors), Cambridge University Press, 2009, 150–163.
[53] P.R., Chernoff, Pointwise convergence of Fourier series, Amer. Math. Monthly 87 (1980),399–400.
[54] K.L., Chung, A course in probability theory, Academic Press, 2001.
[55] M., Cipolla, Sui numeri composti Pcheveriicano la congruenza di Fermat ap-1 ≡ 1 (mod P), Ann. Mat. Pura Appl. 9 (1904), 139–160.
[56] J.A., Clarkson, On the series of prime reciprocals, Proc. Amer. Math. Soc. 17 (1966), 541.
[57] L., Colzani, G., Gigante, Summation formulas and integer points under shifted generalized hyperbolae, preprint.
[58] L., Colzani, G., Gigante, G., Travaglini, Trigonometric approximation and a general form of the Erdos-Turán inequality, Trans. Amer. Math. Soc. 363 (2011), 1101–1123.
[59] L., Colzani, G., Gigante, G., Travaglini, Unpublished, 2012.
[60] L., Colzani, I., Rocco, G., Travaglini, Quadratic estimates for the number of integer points in convex bodies, Rend. Circ. Mat. Palermo 54 (2005), 241–252.
[61] J.H., Conway, R.K., Guy, The book of numbers, Copernicus, 1996.
[62] A.H., Copeland, P., Erdos, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857–860.
[63] W.A., Coppel, Number theory. An introduction to mathematics, Springer, 2009.
[64] J.G. van der, Corput, Zalhentheorische abschätzungen, Math. Ann. 84 (1921), 53–79.
[65] J.G. van der, Corput, Zalhentheorische abschätzungen mit anwendung auf gitter-punktprobleme, Math. Z. 17 (1923), 250–259.
[66] J.G. van der, Corput, Verteilungsfunktionen I-VIII, Proc. Akad. Amsterdam 38 (1935), 813–821, 1058-1066; 39 (1936), 10-19, 19-26, 149-153, 339-344, 489-494, 579-590.
[67] H., Davenport, Notes on irregularities of distribution, Mathematika 3 (1956), 131–135.
[68] J. De, Koninck, F., Luca, Analytic number theory. Exploring the anatomy of integers. Graduate Studies in Mathematics, 134, American Mathematical Society, 2012.
[69] P., Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Prob. 5 (1977), 72–81.
[70] P., Diaconis, D., Freedman, On rounding percentages, J. Amer. Statist. Assoc. 366 (1979), 359–364.
[71] J., Dick, F., Pillichshammer, Discrepancy theory and quasi-Monte Carlo integration, in ‘A panorama of discrepancy theory’ (W.W.L., Chen, A., Srivastav, G., Travaglini – Editors), Lecture Notes in Mathematics, Springer, to appear.
[72] L.E., Dickson, History of the theory of numbers, Vol. I, II, Chelsea Publishing Co., 1966.
[73] M., Drmota, R.F., Tichy, Sequences, discrepancies and applications. Lecture Notes in Mathematics, 1651, Springer, 1997.
[74] P., Erdos, On almost primes, Amer. Math. Monthly 57 (1950), 404–407.
[75] P., Erdos, W.H.J., Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), 67–73.
[76] P., Erdos, J., Suranyi, Topics in the theory of numbers, Undergraduate Texts in Mathematics, Springer, 2003.
[77] P., Erdos, P., Turan, On a problem in the theory of uniform distribution I, II, Indag. Math. 10 (1948), 370-378, 406–413.
[78] G., Everest, T., Ward, An introduction to number theory, Graduate Texts in Mathematics, 232, Springer, 2005.
[79] D.E., Flath, Introduction to number theory, John Wiley & Sons, 1989.
[80] B., Flehinger, On the probability that a random integer has initial digit A, Amer. Math. Monthly 73 (1966), 1056–1061.
[81] G.B., Folland, Fourier analysis and its applications, Wadsworth & Brooks/Cole, 1992.
[82] G.B., Folland, Real analysis. Modern techniques and their applications, John Wiley & Sons, 1999.
[83] L.J., Goldstein, A history of the prime number theorem, Amer. Math. Monthly 80 (1973), 599–615.
[84] S.W., Graham, G., Kolesnik, Van der Corput's method of exponential sums, London Mathematical Society Lecture Note Series, 126, Cambridge University Press, 1991.
[85] A., Granville, The Fundamental theorem of arithmetic, preprint.
[86] A., Granville, Z., Rudnick – Editors, Equidistribution in number theory, an introduction, Springer, 2007
[87] T.H., Gronwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 14 (1913), 113–122.
[88] G.H., Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263–283.
[89] G.H., Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. 15 (1916), 1–25.
[90] G.H., Hardy, E.M., Wright, An introduction to the theory of numbers, Oxford University Press, 1938.
[91] G., Harman, Metric number theory, London Mathematical Society Monographs, New Series, 18, Oxford University Press, 1998.
[92] G., Harman, Variations on the Koksma-Hlawka inequality, Unif. Distr. Theory 5 (2010), 65–78.
[93] H., Hasse, Number theory, Springer, 1980.
[94] F.J., Hickernell, Koksma-Hlawka inequality, in ‘Encyclopedia of statistical sciences’ (S., Kotz, C.B., Read, D.L., Banks - Editors), Wiley-Interscience, 2006.
[95] E., Hlawka, The theory of uniform distribution, AB Academic Publishers, 1984.
[96] E., Hlawka, J., Schoißengeier, R., Taschner, Geometric and analytic number theory, Universitext, Springer, 1991.
[97] P., Hoffman, The man who loved only numbers: The story of Paul Erdos and the search for mathematical truth, Hyperion Books, 1998.
[98] L.K., Hua, Introduction to number theory, Springer, 1982.
[99] M.N., Huxley, The mean lattice point discrepancy, Proc. Edinburgh Math. Soc. 38 (1995), 523–531.
[100] M.N., Huxley, Area, lattice points and exponential sums, London Mathematical Society Monographs, New Series, 13, Oxford Science Publications, 1996.
[101] K., Ireland, M., Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, 84, Springer, 1990.
[102] A., Ivic, The Riemann zeta-function. Theory and applications, Dover Publications, 2003.
[103] G.A., Jones, J.M., Jones, Elementary number theory, Springer Undergraduate Mathematics Series, Springer, 1998.
[104] C., Joy, P.P., Boyle, K.S., Tan, Quasi-Monte Carlo methods in inance, Management Science 42 (1996), 926–938.
[105] Y., Katznelson, An introduction to harmonic analysis, Cambridge Mathematical Library, Cambridge University Press, 2004.
[106] D.G., Kendall, On the number of lattice points in a random oval, Quart. J. Math. Oxford Series 19 (1948), 1–26.
[107] N., Koblitz, A course in number theory and cryptography, Graduate Texts in Mathematics, 114, Springer, 1994.
[108] H., Koch, Number theory, Graduate Studies in Mathematics, American Mathematical Society, 2000.
[109] J.F., Koksma, Een algemeene stellinguit de theorie der gelijkmatige verdeeling modulo 1, Mathematica B (Zupten) 11 (1942–43), 7–11.
[110] T., Kollig, A., Keller, Efficient multidimensional sampling, Computer Graphics Forum 21 (2002), 557–563.
[111] M.N., Kolountzakis, T., Wolff, On the Steinhaus tiling problem, Mathematika 46 (1999), 253–280.
[112] S.V., Konyagin, M.M., Skriganov, A.V., Sobolev, On a lattice point problem arising in the spectral analysis of periodic operators, Mathematika 50 (2003), 87–98.
[113] E., Kratzel, Lattice points, Mathematics and its Applications, Kluwer Academic Publisher, 1988.
[114] L., Kuipers, H., Niederreiter, Uniform distribution of sequences, Dover Publications, 2006.
[115] E., Landau, Über die gitterpunkte in einen kreise (Erste, zweite Mitteilung), Nachr. K. Gesellschaft Wiss. Gottingen, Math.-Phys. Klasse (1915), 148-160, 161–171.
[116] E., Landau, ber Dirichlets teilerproblem, Sitzungsber, Math.-Phys. Klasse Knigl. Bayer. Akad. Wiss. (1915), 317–328.
[117] N.N., Lebedev, Special functions and their applications, Dover Publication, 1972.
[118] F., Lemmermeyer, Reciprocity laws (from Euler to Eisenstein), Springer Monographs in Mathematics, Springer, 2000.
[119] W.J., LeVeque, Fundamentals of number theory, Addison-Wesley, 1977.
[120] W.J., LeVeque, Elementary theory of numbers, Dover Publications, 1990.
[121] J., Matousek, Geometric discrepancy. An illustrated guide, Algorithms and Combinatorics, 18, Springer, 2010.
[122] R., Matthews, The power of one, New Scientist, 10 July 1999.
[123] H., Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994.
[124] W.J., Morokoff, R.E., Caflisch, A quasi-Monte Carlo approach to particle simulation of the heat equation, SIAM J. Numer. Anal. 30 (1993), 1558–1573.
[125] R.M., Murty, N., Thain, Prime numbers in certain arithmetic progressions, Funct. Approx. Comment. Math. 35 (2006), 249–259.
[126] R.M., Murty, N., Thain, Pick's theorem via Minkowski's theorem, Amer. Math. Monthly 114 (2007), 732–736.
[127] W., Narkiewicz, Number theory, World Scientific, 1983.
[128] M.B., Nathanson, Elementary methods in number theory, Graduate Texts in Mathematics, 195, Springer, 2000.
[129] S., Newcomb, Note on the frequency of use of the different digits in natural numbers, Amer. J. Math. 4 (1881), 39–40.
[130] D.J., Newman, A simplified proof of the Erdos-Fuchs theorem, Proc. Amer. Math. Soc. 75 (1979), 209–210.
[131] H., Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, SIAM, 1992.
[132] M., Nigrini, Benford's law. Applications for forensic accounting, Auditing, and fraud detection, John Wiley & Sons, 2012.
[133] M., Nigrini, L., Mittermaier, The use of Benford's law as an aid in analytical procedures, Auditing – A Journal of Practice & Theory 16 (1997), 52–67.
[134] I., Niven, Irrational numbers, Carus Mathematical Monographs, 11, MAA, 2005.
[135] I., Niven, H., Zuckerman, An introduction to the theory of numbers, John Wiley & Sons, 1980.
[136] O., Ore, Number theory and its history, Dover Publications, 1988.
[137] L., Parnovski, N., Sidorova, Critical dimensions for counting lattice points in Euclidean annuli. Math. Model. Nat. Phenom. 5 (2010), 293–316.
[138] L., Parnovski, A., Sobolev, On the Bethe-Sommerfeld conjecture for the polyharmonic operator, Duke Math. J. 107 (2001), 209–238.
[139] R., Pinkham, On the distribution of first significant digits, Ann. Math. Stat. 32 (1961), 1223–1230.
[140] M.A., Pinsky, Introduction to Fourier analysis and wavelets, Graduate Studies in Mathematics, 102, American Mathematical Society, 2002.
[141] M., Plancherel, Contribution a l'etude de la representation d'une fonction arbitraire par les integrales definies, Rend. del Circ. Mat. Palermo 30 (1910), 298–335.
[142] A.N., Podkorytov, The asymptotic of a Fourier transform on a convex curve, Vestn. Leningr. Univ. Mat. 24 (1991), 57–65.
[143] S., Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc. 11 (1919), 181–182.
[144] B., Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139, 271–278.
[145] D., Redmond, Number theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 201, Marcel Dekker, 1996.
[146] E., Regazzini, Probability and statistics in Italy during the First World War I: Cantelli and the laws of large numbers, J. Electron. Hist. Probab. Stat. 1 (2005) 1–12.
[147] F., Ricci, G., Travaglini, Convex curves, Radon transforms and convolution operators defined by singular measures, Proc. Amer. Math. Soc. 129 (2001), 1739–1744.
[148] S., Robinson, Still guarding secrets after years of attacks, RSA earns accolades for its founders, SIAM News 36 5 (2003).
[149] K.F., Roth, On irregularities of distribution, Mathematika 1 (1954), 73–79.
[150] W., Rudin, Principles of mathematical analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1976.
[151] J.D., Sally, P.J., Sally, Roots to research. A vertical development of mathematical problems, American Mathematical Society, 2007.
[152] W.M., Schmidt, Irregularities of distribution IV, Invent. Math. 7 (1968), 55–82.
[153] W.M., Schmidt, Lectures on irregularities of distribution, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 56, Tata Institute of Fundamental Research, Bombay, 1977.
[154] E., Scholz (Editor), Hermann Weyl's Raum-Zeit-Materie and a general introduction to his scientific work, DMV Seminar 30, Birkhauser, 2001.
[155] W., Sierpinski, O Pewnem zagadnieniu zrachunku funckcy asymptotycznych, Prace mat.-fiz. 17 (1906), 77–118.
[156] R.A., Silverman, Complex analysis with applications, Dover Publications, 1984.
[157] S., Singh, The code book: The science of secrecy from ancient Egypt to quantum cryptography, Doubleday Books, 1999.
[158] I.H., Sloan, H., Wozniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?J. Complexity 14 (1998), 1–33.
[159] P., Soardi, Serie di Fourier in più variabili, Unione Matematica Italiana -Pitagora, Quaderni dell'Unione Matematica Italiana 26, 1984.
[160] C.D., Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, 1993.
[161] E., Stein, R., Shakarchi, Fourier analysis, An introduction, Princeton Lectures in Analysis, I, Princeton University Press, 2003.
[162] E., Stein, R., Shakarchi, Real analysis, Measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, III, Princeton University Press, 2005.
[163] E., Stein, R., Shakarchi, Functional analysis, Princeton Lectures in Analysis IV, Princeton University Press, 2011.
[164] E., Stein, G., Weiss, Introduction to Fourier analysis in Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971.
[165] I.N., Stewart, D.O., Tall, Algebraic number theory, Chapman and Hall Mathematics Series, Chapman and Hall, 1979.
[166] J., Stillwell, Elements of algebra, Geometry, numbers, equations, Undergraduate Texts in Mathematics, Springer, 1994.
[167] J., Stillwell, Elements of number theory, Undergraduate Texts in Mathematics, Springer, 2003.
[168] D.R., Stinson, Cryptography, Theory and practice, CRC Press Series on Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2002.
[169] M., Tarnopolska-Weiss, On the number of lattice points in planar domains, Proc. Amer. Math. Soc. 69 (1978), 308–311.
[170] G., Travaglini, Fejer kernels for Fourier series on Tn and on compact Lie groups, Math. Z. 216 (1994), 265–281.
[171] G., Travaglini, Crittograia, Emmeciquadro 21 (2004), 21–28.
[172] G., Travaglini, Average decay of the Fourier transform, in ‘Fourier analysis and convexity’ (L., Brandolini, L., Colzani, A., Iosevich, G., Travaglini – Editors), Birkhauser, 2004, 245–268.
[173] G., Travaglini, Appunti su teoria dei numeri, analisi di Fouriere distribuzione di punti, Unione Matematica Italiana – Pitagora, Quaderni dell'Unione Matematica Italiana 52, 2010.
[174] K., Tsang, Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function, Sci. China Math. 53 (2010), 2561–2572.
[175] M., Tupputi, in preparation.
[176] J.D., Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183–216.
[177] G., Voronoï, Sur un problème du calcul des fonctions asymptotiques, J. Reine Angew. Math. 126 (1903), 241–282.
[178] G.N., Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, 1922.
[179] D.D., Wall, Normal numbers, Thesis, University of California, 1949.
[180] H., Weyl, Über ein problem aus dem gebiete der diophantischen approximationen, Nacr. Ges. Wiss. Gottingen (1914), 234–244.
[181] H., Weyl, Über die gleichverteilung von zhalen mod. eins, Math. Ann. 77 (1916), 313–352.
[182] R.L., Wheeden, A., Zygmund, Measure and integral. An introduction to real analysis, Pure and Applied Mathematics, 43, Marcel Dekker, 1977.
[183] Y., Zhang, Bounded gaps between primes, Ann. Math. 179 (2014), 1121–1174.
[184] G., Ziegler, The great prime number record races, Notices Amer. Math. Soc. 51 (2004), 414–416.
[185] A., Zygmund, Trigonometric series, I, II, Cambridge Mathematical Library, Cambridge University Press, 1993.