Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T02:47:37.125Z Has data issue: false hasContentIssue false

4 - PGSE measurements in complex and exchanging systems

Published online by Cambridge University Press:  06 August 2010

William S. Price
Affiliation:
University of Western Sydney
Get access

Summary

Introduction

A requirement in measuring transport (e.g., transmembrane) or exchange (e.g., ligand binding) is to be able to identify a measurable NMR parameter that has a different value in each state. Modulation of this parameter by the transport or exchange process is examined to characterise the process. Traditionally, NMR chemical shifts or relaxation times have been used for this purpose. With the advent of PGSE methods, a difference in diffusion properties (i.e., a difference in diffusion coefficient between sites or a difference in motional restriction) becomes another measurable NMR parameter that can be used to probe transport or exchange.

In the simplest case the exchange will occur between two freely diffusing sites (e.g., a ligand binding to a macromolecule; Figure 4.1); however, in many real systems (e.g., a suspension of biological cells) one site, or both sites if at higher cellular volume fractions, may be restricted. In contrast to the previous chapter where only simple restricting systems with reflecting boundary conditions were considered and the diffusing species did not interact with other restricting geometries, in real systems (e.g., biological cells, porous systems) it may also be necessary to consider the effects of a combination of exchange, restriction, obstruction and polydispersity in addition to surface and bulk relaxation as well as different bulk diffusion coefficients in each medium (e.g., Figure 4.2). As a consequence, modelling such systems can be very complicated and various approximations are necessarily used.

Type
Chapter
Information
NMR Studies of Translational Motion
Principles and Applications
, pp. 147 - 184
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lévay, B., Studies on Self-Association Equilibria by Self-Diffusion Measurements. J. Phys. Chem. 77 (1973), 2118–21.CrossRefGoogle Scholar
Zimmerman, J. R. and Brittin, W. E., Nuclear Magnetic Resonance Studies in Multiple Phase Systems: Lifetime of a Water Molecule in an Adsorbing Phase on Silica Gel. J. Phys. Chem. 61 (1957), 1328–33.CrossRefGoogle Scholar
Johnson, Jr. C. S., Chemical Rate Processes and Magnetic Resonance. Adv. Magn. Reson. (1965), 33–102.CrossRefGoogle Scholar
Meyer, B. and Peters, T., NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors. Angew. Chemie (Int. Ed. Engl.) 42 (2003), 864–90.CrossRefGoogle ScholarPubMed
Price, W. S. and Kuchel, P. W., Restricted Diffusion of Bicarbonate and Hypophosphite Ions Modulated by Transport in Suspensions of Red Blood Cells. J. Magn. Reson. 90 (1990), 100–10.Google Scholar
Roberts, G. C. K., The Determination of Equilibrium Dissociation Constants of Protein-Ligand Complexes by NMR. In BioNMR in Drug Research, ed. Zerbe, O. and Mannhold, R.. (New York: Wiley, 2003), pp. 309–19.CrossRefGoogle Scholar
Dukhovich, F. S., Gorbatova, E. N., Darkhovskii, M. B., and Kurochkin, V. K., Relationship Between the Dissociation Constant and the Lifetime for Complexes of Biologically Active Substances with Receptors and Enzymes. Pharm. Chem. J. 36 (2002), 248–54.CrossRefGoogle Scholar
Kärger, J., NMR Self-Diffusion Studies in Heterogeneous Systems. Adv. Colloid Interface Sci. 23 (1985), 129–48.CrossRefGoogle Scholar
Kärger, J., Pfeifer, H., and Heink, W., Principles and Applications of Self-Diffusion Measurements by Nuclear Magnetic Resonance. Adv. Magn. Reson. 12 (1988), 1–89.CrossRefGoogle Scholar
Waldeck, A. R., Kuchel, P. W., Lennon, A. J., and Chapman, B. E., NMR Diffusion Measurements to Characterise Membrane Transport and Solute Binding. Prog. NMR Spectrosc. 30 (1997), 39–68.CrossRefGoogle Scholar
Price, W. S., Barzykin, A. V., Hayamizu, K., and Tachiya, M., A Model for Diffusive Transport Through a Spherical Interface Probed by Pulsed-Field Gradient NMR. Biophys. J. 74 (1998), 2259–71.CrossRefGoogle ScholarPubMed
Johnson, Jr. C. S., Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications. Prog. NMR Spectrosc. 34 (1999), 203–56.CrossRefGoogle Scholar
Lennon, A. J., Chapman, B. E., and Kuchel, P. W., total time for image acquisition2 Effects in PFG NMR Analysis of Ligand Binding to Macromolecules. Bull. Magn. Reson. 17 (1996), 224–5.Google Scholar
Price, W. S., Recent Advances in NMR Diffusion Techniques for Studying Drug Binding. Aust. J. Chem. 56 (2003), 855–60.CrossRefGoogle Scholar
Adalsteinsson, T., Dong, W.-F., and Schönhoff, M., Diffusion of 77,000 g/mol Dextran in Sub-Micron Polyelectrolyte Capsule Dispersion Measured Using PFG-NMR. J. Phys. Chem. B 108 (2004), 20056–63.CrossRefGoogle Scholar
Momot, K. I. and Kuchel, P. W., Pulsed Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Drug Delivery Systems. Concepts Magn. Reson. 19A (2003), 51–64.CrossRefGoogle Scholar
Bain, A. D., Chemical Exchange in NMR. Prog. NMR Spectrosc. 43 (2003), 63–103.CrossRefGoogle Scholar
Price, W. S., Elwinger, F., Vigouroux, C., and Stilbs, P., PGSE-WATERGATE, a New Tool for NMR Diffusion-Based Studies of Ligand-Macromolecule Binding. Magn. Reson. Chem. 40 (2002), 391–95.CrossRefGoogle Scholar
Johnson, Jr. C. S., Effects of Chemical Exchange in Diffusion-Ordered 2D NMR Spectra. J. Magn. Reson. A 102 (1993), 214–18.CrossRefGoogle Scholar
Cabrita, E. J., Berger, S., Bräuer, P., and Kärger, J., High-Resolution DOSY NMR with Spins in Different Chemical Surroundings: Influence of Particle Exchange. J. Magn. Reson. 157 (2002), 124–31.CrossRefGoogle ScholarPubMed
Andrasko, J., Water Diffusion Permeability of Human Erythrocytes Studied by a Pulsed Field Gradient NMR Technique. Biochim. Biophys. Acta 428 (1976), 304–11.CrossRefGoogle Scholar
Pfeuffer, J., Flögel, U., Dreher, W., and Leibfritz, D., Restricted Diffusion and Exchange of Intracellular Water: Theoretical Modelling and Diffusion Time Dependence of 1H NMR Measurements on Perfused Glial Cells. NMR Biomed. 11 (1998), 19–31.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Stanisz, G. J., Li, J. G., Wright, G. A., and Henkelman, R. M., Water Dynamics in Human Blood via Combined Measurements of total time for image acquisition2 Relaxation and Diffusion in the Presence of Gadolinium. Magn. Reson. Med. 39 (1998), 223–33.CrossRefGoogle Scholar
Jespersen, S. N., Pedersen, M., and Stodkilde-Jorgensen, H., The Influence of a Cellular Size Distribution on NMR Diffusion Measurements. Eur. Biophys. J. 34 (2005), 890–8.CrossRefGoogle ScholarPubMed
Kuchel, P. W., Coy, A., and Stilbs, P., NMR ‘Diffusion-Diffraction’ of Water Revealing Alignment of Erythrocytes in a Magnetic Field and Their Dimensions and Membrane Transport Characteristics. Magn. Reson. Med. 37 (1997), 637–43.CrossRefGoogle Scholar
Mitra, P. P. and Sen, P. N., Effects of Microgeometry and Surface Relaxation on NMR Pulsed-Field-Gradient Experiments: Simple Pore Geometries. Phys. Rev. B 45 (1992), 143–56.CrossRefGoogle ScholarPubMed
Snaar, J. E. M. and As, H., NMR Self-Diffusion Measurements in a Bounded System with Loss of Magnetization at the Walls. J. Magn. Reson. A 102 (1993), 318–26.CrossRefGoogle Scholar
Coy, A. and Callaghan, P. T., Pulsed Gradient Spin Echo Nuclear Magnetic Resonance for Molecules Diffusing Between Partially Reflecting Rectangular Barriers. J. Chem. Phys. 101 (1994), 4599–609.CrossRefGoogle Scholar
Callaghan, P. T., Pulsed Gradient Spin Echo NMR for Planar, Cylindrical and Spherical Pores under Conditions of Wall Relaxation. J. Magn. Reson. A 113 (1995), 53–9.CrossRefGoogle Scholar
Mitra, P. P., Sen, P. N., and Schwartz, L. M., Short-Time Behaviour of the Diffusion Coefficient as a Geometrical Probe of Porous Media. Phys. Rev. B 47 (1993), 8565–74.CrossRefGoogle ScholarPubMed
Barzykin, A. V., Price, W. S., Hayamizu, K., and Tachiya, M., Pulsed Field Gradient NMR of Diffusive Transport Through a Spherical Interface into an External Medium Containing a Relaxation Agent. J. Magn. Reson. A 114 (1995), 39–46.CrossRefGoogle Scholar
Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions (New York: Dover, 1970).Google Scholar
Kuchel, P. W., Lennon, A. J., and Durrant, C. J., Analytical Solutions and Simulations for Spin-Echo Measurements of Diffusion of Spins in a Sphere with Surface and Bulk Relaxation. J. Magn. Reson. B 112 (1996), 1–17.CrossRefGoogle Scholar
Tanner, J. E., Transient Diffusion in a System Partitioned by Permeable Barriers. Application to NMR Measurements with a Pulsed Field Gradient. J. Chem. Phys. 69 (1978), 1748–54.CrossRefGoogle Scholar
Zientara, G. P. and Freed, J. H., Spin-Echoes for Diffusion in Bounded, Heterogeneous Media: A Numerical Study. J. Chem. Phys. 72 (1980), 1285–92.CrossRefGoogle Scholar
Meerwall, E. and Ferguson, R. D., Interpreting Pulsed-Gradient Spin-Echo Diffusion Experiments with Permeable Membranes. J. Chem. Phys. 74 (1981), 6956–9.CrossRefGoogle Scholar
Meerwall, E. D. and Ferguson, R. D., A Fortran Program to Fit Diffusion Models to Field-Gradient Spin Echo Data. Comput. Phys. Commun. 21 (1981), 421–9.CrossRefGoogle Scholar
Kuchel, P. W. and Durrant, C. J., Permeability Coefficients from NMR q-Space Data: Models with Unevenly Spaced Semi-Permeable Parallel Membranes. J. Magn. Reson. 139 (1999), 258–72.CrossRefGoogle ScholarPubMed
Weerd, L., Melnikov, S. M., Vergeldt, F. J., Novikov, E. G., and As, H., Modelling of Self-diffusion and Relaxation Time NMR in Multicompartment Systems with Cylindrical Geometry. J. Magn. Reson. 156 (2002), 213–21.CrossRefGoogle ScholarPubMed
Jiang, P.-C., Yu, T.-Y., Perng, W.-C., and Hwang, L.-P., Pore-to-Pore Hopping Model for the Interpretation of the Pulsed Gradient Spin Echo Attenuation of Water Diffusion in Cell Suspension Systems. Biophys. J. 80 (2001), 2493–504.CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J., and Bihan, D., Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B 103 (1994), 247–54.CrossRefGoogle ScholarPubMed
Güllmar, D., Haueisen, J., and Reichenbach, J. R., Analysis of gradient or diffusion weighting factor-Value Calculations in Diffusion Weighted and Diffusion Tensor Imaging. Concepts Magn. Reson. 25A (2005), 53–66.CrossRefGoogle Scholar
Özcan, A., (Mathematical) Necessary Conditions for the Selection of Gradient Vectors in DTI. J. Magn. Reson. 172 (2005), 238–41.CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J., and Bihan, D., MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. 66 (1994), 259–67.CrossRefGoogle Scholar
Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., and Chabriat, H., Diffusion Tensor Imaging: Concepts and Applications. J. Mag. Res. Imaging 13 (2001), 534–46.CrossRefGoogle ScholarPubMed
Blum, F. D., Padmanabhan, A. S., and Mohebbi, R., Self-Diffusion of Water in Polycrystalline Smectic Liquid Crystals. Langmuir 1 (1985), 127–31.CrossRefGoogle Scholar
Celebre, G., Coppola, G., and Raineri, G. A., Water Self-Diffusion in Lyotropic Systems by Simulation of Pulsed Field Gradient Spin Echo Nuclear Magnetic Resonance Experiments. J. Chem. Phys. 97 (1992), 7781–5.CrossRefGoogle Scholar
Celebre, G., Chidichimo, G., Coppola, L., Mesa, C., Muzzalupo, R., Pogliani, L., Ranieri, G. A., and Terenzi, M., Water Self-Diffusion in Lyotropic Liquid Crystals: Pulsed Gradient Spin-Echo NMR and Simulation Techniques. Gazz. Chim. Ital. 126 (1996), 489–503.Google Scholar
Dvinskikh, S. V. and Furó, I., Measurement of the Principal Values of the Anisotropic Diffusion Tensor in an Unoriented Sample by Exploiting the Chemical Shift Aniostropy: 19F PGSE NMR with Homonuclear Decoupling. J. Magn. Reson. 148 (2001), 73–7.CrossRefGoogle Scholar
Callaghan, P. T., Jolley, K. W., and Lelievre, J., Diffusion of Water in the Endosperm Tissue of Wheat Grains as Studied by Pulsed Field Gradient Nuclear Magnetic Resonance. Biophys. J. 28 (1979), 133–42.CrossRefGoogle ScholarPubMed
Callaghan, P. T. and Söderman, O., Examination of the Lamellar Phase of Aerosol OT/Water Using Pulsed Field Gradient Nuclear Magnetic Resonance. J. Phys. Chem. 87 (1983), 1737–44.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th edn. (New York: Academic Press, 2007).Google Scholar
Gelderen, P., DesPres, D., Zijl, P. C. M., and Moonen, C. T. W., Evaluation of Restricted Diffusion in Cylinders. Phosphocreatine in Rabbit Leg Muscle. J. Magn. Reson. B 103 (1994), 255–60.CrossRefGoogle ScholarPubMed
Neuman, C. H., Spin Echo of Spins Diffusing in a Bounded Medium. J. Chem. Phys. 60 (1974), 4508–11.CrossRefGoogle Scholar
Söderman, O. and Jönsson, B., Restricted Diffusion in Cylindrical Geometry. J. Magn. Reson. A 117 (1995), 94–7.CrossRefGoogle Scholar
Linse, P. and Söderman, O., The Validity of the Short-Gradient-Pulse Approximation in NMR Studies of Restricted Diffusion. Simulations of Molecules Diffusing between Planes, in Cylinders and Spheres. J. Magn. Reson. A 116 (1995), 77–86.CrossRefGoogle Scholar
Price, W. S., Pulsed Field Gradient NMR as a Tool for Studying Translational Diffusion, Part I. Basic Theory. Concepts Magn. Reson. 9 (1997), 299–336.3.0.CO;2-U>CrossRefGoogle Scholar
Avram, L., Assaf, Y., and Cohen, Y., The Effect of Rotational Angle and Experimental Parameters on the Diffraction Patterns and Micro-Structural Information Obtained from q-Space Diffusion NMR: Implication for Diffusion in White Matter Fibers. J. Magn. Reson. 169 (2004), 30–8.CrossRefGoogle ScholarPubMed
Gibbs, S. J., Observations of Diffusive Diffraction in a Cylindrical Pore by PFG NMR. J. Magn. Reson. 124 (1997), 223–6.CrossRefGoogle Scholar
Basser, P. J., Relationships Between Diffusion Tensor and q-Space MRI. Magn. Reson. Med. 47 (2002), 392–7.CrossRefGoogle ScholarPubMed
Bergman, D. J. and Dunn, K.-J., Self-Diffusion in a Periodic Porous Medium with Interface Absorption. Phys. Rev. E 51 (1995), 3401–16.CrossRefGoogle Scholar
Bergman, D. J., Dunn, K.-J., Schwartz, L. M., and Mitra, P. P., Self-Diffusion in a Periodic Porous Medium: A Comparison of Different Approaches. Phys. Rev. E 51 (1995), 3393–400.CrossRefGoogle Scholar
Dunn, K.-J. and Bergman, D. J., Self Diffusion of Nuclear Spins in a Porous Medium with a Periodic Microstructure. J. Chem. Phys. 102 (1995), 3041–54.CrossRefGoogle Scholar
Callaghan, P. T., MacGowan, D., Packer, K. J., and Zelaya, F. O., High-Resolution q-Space Imaging in Porous Structures. J. Magn. Reson. 90 (1990), 177–82.Google Scholar
Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., and Zelaya, F. O., Diffraction-Like Effects in NMR Diffusion of Fluids in Porous Solids. Nature 351 (1991), 467–9.CrossRefGoogle Scholar
Callaghan, P. T., Coy, A., Halpin, T. P. J., MacGowan, D., Packer, K. J., and Zelaya, F. O., Diffusion in Porous Systems and the Influence of Pore Morphology in Pulsed Field Gradient Spin-Echo Nuclear Magnetic Resonance Studies. J. Chem. Phys. 97 (1992), 651–62.CrossRefGoogle Scholar
Coy, A. and Callaghan, P. T., Pulsed Gradient Spin-Echo NMR ‘Diffusive Diffraction’ Experiments on Water Surrounding Close-Packed Polymer Spheres. J. Colloid Interface Sci. 168 (1994), 373–9.CrossRefGoogle Scholar
Mitra, P. P. and Halperin, B. I., Effects of Finite Gradient Pulse Widths in Pulsed Field Gradient Diffusion Measurements. J. Magn. Reson. A 113 (1995), 94–101.CrossRefGoogle Scholar
Malmborg, C., Topgaard, D., and Söderman, O., NMR Diffusometry and the Short Gradient Pulse Limit Approximation. J. Magn. Reson. 169 (2004), 85–91.CrossRefGoogle ScholarPubMed
Bhattacharya, A. and Mahanti, S. D., Spin Echo Diffraction in Disordered Media with Single Length Scales. Phys. Rev. B 55 (1997), 11230–5.CrossRefGoogle Scholar
Banavar, J. R., Lipsicas, M., and Willemsen, J. F., Determination of the Random-Walk Dimension of Fractals by Means of NMR. Phys. Rev. B 32 (1985), 6066.CrossRefGoogle ScholarPubMed
Banavar, J. R. and Willemsen, J. F., Probability Density for Diffusion on Fractals. Phys. Rev. B 30 (1984), 6778–9.CrossRefGoogle Scholar
Kärger, J. and Vojta, G., On the Use of NMR Pulsed Field-Gradient Spectroscopy for the Study of Anomalous Diffusion in Fractal Networks. Chem. Phys. Lett. 141 (1987), 411–13.CrossRefGoogle Scholar
Kärger, J., Pfeifer, H., and Vojta, G., Time Correlation During Anomalous Diffusion in Fractal Systems and Signal Attenuation in NMR Field-Gradient Spectroscopy. Phys. Rev. A 37 (1988), 4514–17.CrossRefGoogle ScholarPubMed
Jug, G., Theory of NMR Field-Gradient-Spectroscopy for Anomalous Diffusion in Fractal Networks. Chem. Phys. Lett. 131 (1986), 94–7.CrossRefGoogle Scholar
Widom, A. and Chen, H. J., Fractal Brownian Motion and Nuclear Spins. J. Phys. A Math. Gen. 28 (1995), 1243–7.CrossRefGoogle Scholar
Damion, R. A. and Packer, K. J., Predictions for Pulsed-Field-Gradient NMR Experiments of Diffusion in Fractal Spaces. Proc. R. Soc. London A 453 (1997), 205–11.CrossRefGoogle Scholar
Ardelean, I. and Kimmich, R., Principles and Unconventional Aspects of NMR Diffusometry. In Annual Reports on NMR Spectroscopy. ed. Webb, G. A.. vol. 49. (London: Elsevier, 2003), pp. 43–115.CrossRefGoogle Scholar
Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics. (Oxford: Clarendon Press, 1986).Google Scholar
Terentjev, E. M., Callaghan, P. T., and Warner, M., Pulsed Gradient Spin-Echo Nuclear Magnetic Resonance of Confined Brownian Particles. J. Chem. Phys. 102 (1995), 4619–24.CrossRefGoogle Scholar
Stejskal, E. O., Use of Spin Echoes in a Pulsed Magnetic-Field Gradient to Study Anisotropic Restricted Diffusion and Flow. J. Chem. Phys. 43 (1965), 3597–603.CrossRefGoogle Scholar
Fatkullin, N. and Kimmich, R., Theory of Field-Gradient NMR Diffusometry of Polymer Segment Displacements in the Tube-Reptation Model. Phys. Rev. E 52 (1995), 3273–6.CrossRefGoogle ScholarPubMed
Fatkullin, N., Fischer, E., Mattea, C., Beginn, U., and Kimmich, R., Polymer Dynamics under Nanoscopic Constraints: The Corset Effect as Revealed by NMR Relaxometry and Diffusometry. Chem. Phys. Chem. 5 (2004), 884–94.CrossRefGoogle ScholarPubMed
Callaghan, P. T., Principle of Nuclear Magnetic Resonance Microscopy. (Oxford: Clarendon Press, 1991).Google Scholar
Packer, K. J., Diffusion & Flow in Liquids. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1615–26.Google Scholar
Hayward, R. J., Packer, K. J., and Tomlinson, D. J., Pulsed Field-Gradient Spin-Echo NMR Studies of Flow in Fluids. Mol. Phys. 23 (1972), 1083–102.CrossRefGoogle Scholar
Momot, K. I. and Kuchel, P. W., PFG NMR Diffusion Experiments for Complex Systems. Concepts Magn. Reson. 28A (2006), 249–69.CrossRefGoogle Scholar
Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E. and Laval-Jeantet, M., MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders. Radiology 161 (1986), 401–7.CrossRefGoogle ScholarPubMed
Turner, R. and Keller, P., Angiography and Perfusion Measurements by NMR. Prog. NMR Spectrosc. 23 (1991), 93–133.CrossRefGoogle Scholar
Gao, J.-H. and Gore, J. C., Turbulent Flow Effects on NMR Imaging: Measurement of Turbulent Intensity. Med. Phys. 18 (1991), 1045–51.CrossRefGoogle ScholarPubMed
Gatenby, J. C. and Gore, J. C., Characterization of Turbulent Flows by NMR Measurements with Pulsed Field Gradients. J. Magn. Reson. A 110 (1994), 26–32.CrossRefGoogle Scholar
Seymour, J. D. and Callaghan, P. T., ‘Flow-Diffraction’ Structural Characterization and Measurement of Hydrodynamic Dispersion in Porous Media by PGSE NMR. J. Magn. Reson. A 122 (1996), 90–3.CrossRefGoogle Scholar
Seymour, J. D. and Callaghan, P. T., Generalized Approach to NMR Analysis of Flow and Dispersion in Porous Media. AIChE J. 43 (1997), 2096–111.CrossRefGoogle Scholar
Glasel, J. A. and Lee, K. H., On the Interpretation of Water Nuclear Magnetic Resonance Relaxation Times in Heterogeneous Systems. J. Am. Chem. Soc. 96 (1974), 970–8.CrossRefGoogle Scholar
Blinc, R., Dolinšek, J., Lahajnar, G., Sepe, A., Zupančič, I., Žumer, S., Milia, F., and Pintar, M. M., Spin-Lattice Relaxation of Water in Cement Gels. Z. Naturforsch. 43A (1988), 1026–38.Google Scholar
Price, W. S., Stilbs, P., Jönsson, B., and Söderman, O., Macroscopic Background Gradient and Radiation Damping Effects on High-Field PGSE NMR Diffusion Measurements. J. Magn. Reson. 150 (2001), 49–56.CrossRefGoogle ScholarPubMed
Endre, Z. H., Kuchel, P. W., and Chapman, B. E., Cell-Volume Dependence of 1H Spin-Echo NMR Signals in Human Erythrocyte Suspensions. The Influence of In Situ Field Gradients. Biochim. Biophys. Acta 803 (1984), 137–44.CrossRefGoogle ScholarPubMed
Kärger, J., Pfeifer, H., and Rudtsch, S., The Influence of Internal Magnetic Field Gradients on NMR Self-Diffusion Measurements of Molecules Adsorbed on Microporous Crystallites. J. Magn. Reson. 85 (1989), 381–7.Google Scholar
Williams, W. D., Seymour, E. F. W., and Cotts, R. M., A Pulsed-Gradient Multiple-Spin-Echo NMR Technique for Measuring Diffusion in the Presence of Background Magnetic Field Gradients. J. Magn. Reson. 31 (1978), 271–82.Google Scholar
Lian, J., Williams, D. S., and Lowe, I. J., Magnetic Resonance Imaging of Diffusion in the Presence of Background Gradients and Imaging of Background Gradients. J. Magn. Reson. A 106 (1994), 65–74.CrossRefGoogle Scholar
McDonald, P. J., Stray Field Magnetic Resonance Imaging. Prog. NMR Spectrosc. 30 (1997), 69–99.CrossRefGoogle Scholar
Valckenborg, R. M. E., Pel, L., and Kopinga, K., NMR Relaxation and Diffusion Measurements on Iron(III)-Doped Kaolin Clay. J. Magn. Reson. 151 (2001), 291–7.CrossRefGoogle Scholar
Lee, H., Shao, H., Huang, Y., and Kwak, B., Synthesis of MRI Contrast Agent by Coating Superparamagnetic Iron Oxide with Chitosan. IEEE Trans. Magn. 41 (2005), 4102–4.Google Scholar
Song, Y.-Q., Ryu, S., and Sen, P. N., Determining Multiple Length Scales in Rocks. Nature 406 (2000), 178–81.CrossRefGoogle ScholarPubMed
Song, Y.-Q., Using Internal Magnetic Fields to Obtain Pore Size Distributions of Porous Media. Concepts Magn. Reson. 18A (2003), 97–110.CrossRefGoogle Scholar
Packer, K. J., The Effects of Diffusion through Locally Inhomogenous Magnetic Fields in Transverse Nuclear Spin Relaxation in Heterogenous Systems. Proton Transverse Relaxation in Striated Muscle Tissue. J. Magn. Reson. 9 (1973), 438–43.Google Scholar
Tarczon, J. C. and Halperin, W. P., Interpretation of NMR Diffusion Measurements in Uniform- and Nonuniform-Field Profiles. Phys. Rev. B 32 (1985), 2798–807.CrossRefGoogle ScholarPubMed
Recchia, C. H., Gorny, K., and Pennington, C. H., Gaussian-Approximation Formalism for Evaluating Decay of NMR Spin Echoes. Phys. Rev. B 54 (1996), 4207–17.CrossRefGoogle ScholarPubMed
Hürlimann, M. D., Effective Gradients in Porous Media Due to Susceptibility Differences. J. Magn. Reson. 131 (1998), 232–40.CrossRefGoogle ScholarPubMed
Hürlimann, M. D., Helmer, K. G., and Sotak, C. H., Dephasing of Hahn Echo in Rocks by Diffusion in Susceptibility-Induced Field Inhomogeneities. Magn. Reson. Imaging 16 (1998), 535–9.CrossRefGoogle ScholarPubMed
Song, Y.-Q., Determining Pore Sizes Using an Internal Magnetic Field. J. Magn. Reson. 143 (2000), 397–401.CrossRefGoogle ScholarPubMed
Song, Y.-Q., Detection of the High Eigenmodes of Spin Diffusion in Porous Media. Phys. Rev. Lett. 85 (2000), 3878–81.CrossRefGoogle ScholarPubMed
Zhang, G. Q. and Hirasaki, G. J., CPMG Relaxation by Diffusion with Constant Magnetic Field Gradient in a Restricted Geometry: Numerical Simulation and Application. J. Magn. Reson. 163 (2003), 81–91.CrossRefGoogle Scholar
Valfouskaya, A., Adler, P. M., Thovert, J.-F., and Fleury, M., Nuclear Magnetic Resonance Diffusion with Surface Relaxation in Porous Media. J. Colloid Interface Sci. 295 (2006), 188–201.CrossRefGoogle ScholarPubMed
Mitra, P. P. and Doussal, P., Long-Time Magnetization Relaxation of Spins Diffusing in a Random Field. Phys. Rev. B 44 (1991), 12035–8.CrossRefGoogle Scholar
Fatkullin, N., Spin Relaxation and Diffusion Damping of the Spin Echo Amplitude of a Particle Moving in a Random Gaussian Magnetic Field. Sov. Phys. JETP 74 (1992), 833–8.Google Scholar
Bendel, P., Spin-Echo Attenuation by Diffusion in Nonuniform Field Gradients. J. Magn. Reson. 86 (1990), 509–15.Google Scholar
Doussal, P. and Sen, P. N., Decay of Nuclear Magnetization by Diffusion in a Parabolic Magnetic Field: An Exactly Solvable Model. Phys. Rev. B 46 (1992), 3465–85.CrossRefGoogle Scholar
Joseph, P. M., An Analytical Model for Diffusion of Spins in an Inhomogeneous Field Gradient. J. Magn. Reson. B 105 (1994), 95–7.CrossRefGoogle Scholar
Håkansson, B., Jönsson, B., Linse, P., and Söderman, O., The Influence of a Nonconstant Magnetic-Field Gradient on PFG NMR Diffusion Experiments. A Brownian-Dynamics Computer Simulation Study. J. Magn. Reson. 124 (1997), 343–51.CrossRefGoogle Scholar
Zielinski, L. J. and Sen, P. N., Relaxation of Nuclear Magnetization in a Nonuniform Magnetic Field Gradient and in a Restricted Geometry. J. Magn. Reson. 147 (2000), 95–103.CrossRefGoogle Scholar
Lin, G., Chen, Z., Zhong, J., Lin, D., and Liao, X., A Novel Propagator Approach for NMR Signal Attenuation due to Anisotropic Diffusion Under Various Magnetic Field Gradients. Chem. Phys. Lett. 335 (2001), 249–56.CrossRefGoogle Scholar
Grebenkov, D. S., Nuclear Magnetic Resonance Restricted Diffusion Between Parallel Planes in a Cosine Magnetic Field: An Exactly Solvable Model. J. Chem. Phys. 126 (2007), 104706-1–104706-15.CrossRefGoogle Scholar
Leu, G., Tang, X.-W., Peled, S., Maas, W. E., Singer, S., Cory, D. G., and Sen, P. N., Amplitude Modulation and Relaxation Due to Diffusion in NMR Experiments with a Rotating Sample. Chem. Phys. Lett. 332 (2000), 344–50.CrossRefGoogle Scholar
Zielinski, L. J. and Sen, P. N., Restricted Diffusion in Grossly Inhomogeneous Fields. J. Magn. Reson. 164 (2003), 145–53.CrossRefGoogle ScholarPubMed
Casieri, C., Bubici, S., and Luca, F., Self-Diffusion Coefficient by Single-Sided NMR. J. Magn. Reson. 162 (2003), 348–55.CrossRefGoogle ScholarPubMed
Rata, D. G., Casanova, F., Perlo, J., Demco, D. E., and Blümich, B., Self-Diffusion Measurements by a Mobile Single-Sided NMR Sensor with Improved Magnetic Field Gradient. J. Magn. Reson. 180 (2006), 229–35.CrossRefGoogle ScholarPubMed
Sukstanskii, A. L. and Yablonskiy, D. A., Gaussian Approximation in the Theory of MR Signal Formation in the Presence of Structure-Specific Magnetic Field Inhomogeneities. J. Magn. Reson. 163 (2003), 236–43.CrossRefGoogle ScholarPubMed
Sukstanskii, A. L. and Yablonskiy, D. A., Gaussian Approximation in the Theory of MR Signal Formation in the Presence of Structure-Specific Magnetic Field Inhomogeneities. Effects of Impermeable Susceptibility Inclusions. J. Magn. Reson. 167 (2004), 56–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×