Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T10:57:12.541Z Has data issue: false hasContentIssue false

Part II - Practice of Neuromonitoring: Neonatal Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Douglas-Escobar, M, Weiss, MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169(4):397403.Google Scholar
Ferriero, DM, Bonifacio, SL. The search continues for the elusive biomarkers of neonatal brain injury. J Pediatr. 2014;164(3):438–40.CrossRefGoogle ScholarPubMed
Rutherford, M, Malamateniou, C, McGuinness, A, et al. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):351–60.Google Scholar
Bonifacio, SL, Glass, HC, Vanderpluym, J, et al. Perinatal events and early magnetic resonance imaging in therapeutic hypothermia. J Pediatr. 2011;158(3): 360–5.CrossRefGoogle ScholarPubMed
Sarnat, HB, Sarnat, MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696705.Google Scholar
Thompson, CM, Puterman, AS, Linley, LL, et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr. 1997;86(7):757–61.Google Scholar
Lee, AC, Kozuki, N, Blencowe, H, et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013;74(Suppl 1):5072.CrossRefGoogle ScholarPubMed
Lawn, JE, Cousens, S, Zupan, J; the Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005;365(9462):891900.CrossRefGoogle ScholarPubMed
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al.; American Clinical Neurophysiology Society Critical Care Monitoring. American Clinical Neurophysiology Society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.CrossRefGoogle ScholarPubMed
Murray, DM, Boylan, GB, Ali, I. et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F187–91.Google Scholar
Boylan, GB. EEG monitoring in the neonatal intensive care unit: a critical juncture. Clin Neurophysiol. 2011;122(10):1905–7.Google Scholar
Herman, ST, Abend, NS, Bleck, TP, et al.; E. E. G. T. F. o. t. A. C. N. S. Critical Care Continuous. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):8795.CrossRefGoogle ScholarPubMed
El-Dib, M, Chang, T, Tsuchida, TN, Clancy, RR. Amplitude-integrated electroencephalography in neonates. Pediatr Neurol. 2009;41(5):315–26.CrossRefGoogle ScholarPubMed
Korotchikova, I, Connolly, S, Ryan, CA, et al. EEG in the healthy term newborn within 12 hours of birth. Clin Neurophysiol. 2009;120(6):1046–53.Google Scholar
Korotchikova, I, Stevenson, NJ, Livingstone, V, Ryan, CA, Boylan, GB. Sleep-wake cycle of the healthy term newborn infant in the immediate postnatal period. Clin Neurophysiol. 2016;127(4):2095–101.Google Scholar
Gunn, AJ, Thoresen, M. Animal studies of neonatal hypothermic neuroprotection have translated well into practice. Resuscitation. 2015;97:8890.Google Scholar
Pressler, RM, Boylan, GB, Morton, M, Binnie, CD, Rennie, JM. Early serial EEG in hypoxic ischaemic encephalopathy. Clin Neurophysiol. 2001;112(1):31–7.CrossRefGoogle ScholarPubMed
Lynch, NE, Stevenson, NJ, Livingstone, V, et al. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia. 2012;53(3):549–57.Google Scholar
Murray, DM, Boylan, GB, Ryan, CA, Connolly, S. Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. Pediatrics. 2009;124(3):e459–67.Google Scholar
Walsh, BH, Murray, DM, Boylan, GB. The use of conventional EEG for the assessment of hypoxic ischaemic encephalopathy in the newborn: a review. Clin Neurophysiol. 2011;122(7):1284–94.CrossRefGoogle ScholarPubMed
Nash, KB, Bonifacio, SL, Glass, HC, et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology. 2011;76(6):556–62.CrossRefGoogle ScholarPubMed
Boylan, G, Burgoyne, L, Moore, C, O’Flaherty, B, Rennie, J. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99(8):1150–5.CrossRefGoogle ScholarPubMed
al Naqeeb, N, Edwards, AD, Cowan, FM, Azzopardi, D. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics. 1999;103(6 Pt 1):1263–71.Google Scholar
de Vries, LS, Toet, MC. How to assess the aEEG background. J Pediatr. 2009;154(4):625–6; author reply 626–7.Google Scholar
Hellstrom-Westas, L. Monitoring brain function with aEEG in term asphyxiated infants before and during cooling. Acta Paediatr. 2013;102(7):678–9.Google Scholar
Azzopardi, D, Brocklehurst, P, Edwards, D, et al. The TOBY Study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: a randomised controlled trial. BMC Pediatr. 2008;8:17.Google Scholar
Shankaran, S, Pappas, A, McDonald, SA, et al.; H. Eunice Kennedy Shriver National Institute of Child and N. Human Development Neonatal Research. Predictive value of an early amplitude integrated electroencephalogram and neurologic examination. Pediatrics. 2011;128(1):e112–20.CrossRefGoogle ScholarPubMed
Cseko, AJ, Bango, M, Lakatos, P, et al. Accuracy of amplitude-integrated electroencephalography in the prediction of neurodevelopmental outcome in asphyxiated infants receiving hypothermia treatment. Acta Paediatr. 2013;102(7):707–11.Google Scholar
Toet, MC, Hellstrom-Westas, L, Groenendaal, F, Eken, P, de Vries, LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1999;81(1):F1923.CrossRefGoogle ScholarPubMed
Thoresen, M, Hellstrom-Westas, L, Liu, X, de Vries, LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010;126(1):e131–9.Google Scholar
Evans, E, Koh, S, Lerner, J, Sankar, R, Garg, M. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F169–73.Google Scholar
Marics, G, Cseko, A, Vasarhelyi, B, et al. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr. 2013;13:194.Google Scholar
Olischar, M, Shany, E, Aygun, C, et al. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102(3):203–11.Google Scholar
Yamamoto, H, Okumura, A, Fukuda, M. Epilepsies and epileptic syndromes starting in the neonatal period. Brain Dev. 2011;33(3):213–20.Google Scholar
Young, GB, da Silva, OP. Effects of morphine on the electroencephalograms of neonates: a prospective, observational study. Clin Neurophysiol. 2000;111(11):1955–60.CrossRefGoogle ScholarPubMed
Shany, E, Benzaquen, O, Friger, M, Richardson, J, Golan, A. Influence of antiepileptic drugs on amplitude-integrated electroencephalography. Pediatr Neurol. 2008;39(6):387–91.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L. Midazolam and amplitude-integrated EEG. Acta Paediatr. 2004;93(9):1153–4.Google Scholar
Scher, MS, Alvin, J, Gaus, L, Minnigh, B, Painter, MJ. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol. 2003;28(4):277–80.Google Scholar
Mathieson, SR, Livingstone, V, Low, E, et al. Phenobarbital reduces EEG amplitude and propagation of neonatal seizures but does not alter performance of automated seizure detection. Clin Neurophysiol. 2016;127(10):3343–50.Google Scholar
Azzopardi, D, Robertson, NJ, Kapetanakis, A, et al. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal fNeonatal Ed. 2013;98(5):F437–9.Google ScholarPubMed
Hellstrom-Westas, L, Rosen, I, Swenningsen, NW. Silent seizures in sick infants in early life. Diagnosis by continuous cerebral function monitoring. Acta Paediatr Scand. 1985;74(5):741–8.CrossRefGoogle ScholarPubMed
van Rooij, LG, Hellstrom-Westas, L, de Vries, LS. Treatment of neonatal seizures. Semin Fetal Neonatal Med. 2013;18(4):209–15.Google Scholar
Wusthoff, CJ, Dlugos, DJ, Gutierrez-Colina, A, et al. Electrographic seizures during therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. J Child Neurol. 2011;26(6):724–8.Google Scholar
Sharpe C, Reiner GE, Davis SL, et al. Levetiracetam versus phenobarbital for neonatal seizures: a randomized controlled trial. Pediatrics. 2020;145(6):e20193182.Google Scholar
Wirrell, EC, Armstrong, EA, Osman, LD, Yager, JY. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res. 2001;50(4):445–54.Google Scholar
Miller, SP, Weiss, J, Barnwell, A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology. 2002;58(4):542–8.CrossRefGoogle ScholarPubMed
Low, E, Boylan, GB, Mathieson, SR, et al. Cooling and seizure burden in term neonates: an observational study. Arch Dis Child Fetal Neonatal Ed. 2012;97(4):F267–72.Google Scholar
Glass, HC, Wusthoff, CJ, Shellhaas, RA, et al. Risk factors for EEG seizures in neonates treated with hypothermia: A multicenter cohort study. Neurology. 2014;82(14):1239–44.Google Scholar
Srinivasakumar, P, Zempel, J, Wallendorf, M, et al. Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr. 2013;163(2):465–70.Google Scholar
Rafay, MF. , Cortez, MA, de Veber, GA, et al. Predictive value of clinical and EEG features in the diagnosis of stroke and hypoxic ischemic encephalopathy in neonates with seizures. Stroke. 2009;40(7):2402–7.Google Scholar
Shellhaas, RA, Soaita, AI, Clancy, RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120(4):770–7.Google Scholar
Glass, HC, Nash, KB, Bonifacio, SL, et al. Seizures and magnetic resonance imaging-detected brain injury in newborns cooled for hypoxic-ischemic encephalopathy. J Pediatr. 2011;159(5):731–5 e731.Google Scholar
Howell, KB, McMahon, JM, Carvill, GL, et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85(11):958–66.Google Scholar
Pisano, T, Numis, AL, Heavin, SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015;56(5):685–91.Google Scholar
Dulac, O. Epileptic encephalopathy with suppression-bursts and nonketotic hyperglycinemia. Handb Clin Neurol. 2013;113:1785–97.Google Scholar
Azzopardi, DV, Strohm, B, Edwards, AD, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361(14):1349–58.Google Scholar
Rennie, JM, Hagmann, CF, Robertson, NJ. Outcome after intrapartum hypoxic ischaemia at term. Semin Fetal Neonatal Med. 2007;12(5):398407.Google Scholar
Mercuri, E, Anker, S, Guzzetta, A, et al. Visual function at school age in children with neonatal encephalopathy and low Apgar scores. Arch Dis Child Fetal Neonatal Ed. 2004;89(3):F258–62.Google Scholar
Azzopardi, D, Strohm, B, Marlow, N, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014;371(2):140–9.Google Scholar
van Handel, M, de Sonneville, L, de Vries, LS, Jongmans, MJ, Swaab, H. Specific memory impairment following neonatal encephalopathy in term-born children. Dev Neuropsychol. 2012;37(1):3050.Google Scholar
de Haan, M, Wyatt, JS, Roth, S, et al. Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci. 2006;9(4):350–8.Google Scholar
van Handel, M, Swaab, H, de Vries, L, Jongmans, MJ. Behavioral outcome in children with a history of neonatal encephalopathy following perinatal asphyxia. J Pediatr Psychol. 2010;35(3):286–95.Google Scholar
Marlow, N, Rose, AS, Rands, CE, Draper, E. S. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2005;90(5):F380–7.Google Scholar
Odd, DE, Lewis, G, Whitelaw, A, Gunnell, D. Resuscitation at birth and cognition at 8 years of age: a cohort study. Lancet. 2009;373(9675):1615–22.CrossRefGoogle ScholarPubMed
Osredkar, D, Toet, MC, van Rooij, LG, et al. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2005;115(2):327–32.Google Scholar
Hallberg, B, Grossmann, K, Bartocci, M, Blennow, M. The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment. Acta Paediatr. 2010;99(4):531–6.Google Scholar
Azzopardi, D, TOBY Study Group. Predictive value of the amplitude integrated EEG in infants with hypoxic ischaemic encephalopathy: data from a randomised trial of therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2014;99(1):F80–2.Google Scholar

References

McCoy, B, Hahn, CD. Continuous EEG monitoring in the neonatal intensive care unit. J Clin Neurophysiol. 2013;30(2):106–14.Google Scholar
Abend, NS, Dlugos, DJ, Clancy, RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke. J Clin Neurophysiol. 2013;30(2):134–42.Google Scholar
Pressler, RM, Cilio, MR, Mizrahi, EM, et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia. 2021;62(3):615–28.Google Scholar
Boylan, GB, Pressler, RM, Rennie, JM, et al. Outcome of electroclinical, electrographic, and clinical seizures in the newborn infant. Dev Med Child Neurol. 1999;41(12):819–25.Google Scholar
Glass, HC. Neonatal seizures: advances in mechanisms and management. Clin Perinatol. 2014;41(1):177–90.Google Scholar
Murray, DM, Boylan, GB, Ali, I, et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F187–91.Google Scholar
Pellegrin, S, Munoz, FM, Padula, M, et al. Neonatal seizures: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2019;37(52):7596–609.Google Scholar
Lombroso, CT. Seizures in the newborn period. In Vinken, PJ, Bruyn, GW, editors. Handbook of Clinical Neurology. Volume 15: The Epilepsies. Amsterdam: North-Holland; 1974, pp. 189218.Google Scholar
Lynch, JK, Nelson, KB. Epidemiology of perinatal stroke. Curr Opin Pediatr. 2001;13(6):499505.Google Scholar
Clancy, R, Malin, S, Laraque, D, Baumgart, S, Younkin, D. Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child. 1985;139(6):601–6.Google Scholar
Mercuri, E, Rutherford, M, Cowan, F, et al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics. 1999;103(1):3946.CrossRefGoogle ScholarPubMed
Scher, MS, Beggarly, M. Clinical significance of focal periodic discharges in neonates. J Child Neurol. 1989;4(3):175–85.CrossRefGoogle ScholarPubMed
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.Google Scholar
Herman, ST, Abend, NS, Bleck, TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32(2):96108.Google Scholar
Walsh, BH, Low, E, Bogue, CO, Murray, DM, Boylan, GB. Early continuous video electroencephalography in neonatal stroke. Dev Med Child Neurol. 2011;53(1):8992.Google Scholar
Bonduel, M, Sciuccati, G, Hepner, M et al. Arterial ischemic stroke and cerebral venous thrombosis in children: a 12-year Argentinean registry. Acta Haematol. 2006;115(3–4):180–5.Google Scholar
Berfelo, FJ, Kersbergen, KJ, van Ommen, CH, et al. Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke. 2010;41(7):1382–8.CrossRefGoogle ScholarPubMed
Frerichs, KU, Deckert, M, Kempski, O, et al. Cerebral sinus and venous thrombosis in rats induces long-term deficits in brain function and morphology–evidence for a cytotoxic genesis. J Cereb Blood Flow Metab. 1994;14(2):289300.Google Scholar
Kelly, JJ, Jr., Mellinger, JF, Sundt, TM, Jr. Intracranial arteriovenous malformations in childhood. Ann Neurol. 1978;3(4):338–43.CrossRefGoogle ScholarPubMed
Paiva, T, Campos, J, Baeta, E, et al. EEG monitoring during endovascular embolization of cerebral arteriovenous malformations. Electroencephalogr Clin Neurophysiol. 1995;95(1):313.Google Scholar
Fenichel, GM, Webster, DL, Wong, WK. Intracranial hemorrhage in the term newborn. Arch Neurol. 1984;41(1):30–4.CrossRefGoogle ScholarPubMed
Tramonte, JJ, Goodkin, HP. Temporal lobe hemorrhage in the full-term neonate presenting as apneic seizures. J Perinatol. 2004;24(11):726–9.Google Scholar
Holt, DE, Halket, S, de Louvois, J, Harvey, D. Neonatal meningitis in England and Wales: 10 years on. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F85–9.CrossRefGoogle Scholar
Chequer, RS, Tharp, BR, Dreimane, D, et al. Prognostic value of EEG in neonatal meningitis: retrospective study of 29 infants. PediatrNeurol. 1992;8(6):417–22.Google Scholar
ter Horst, HJ, van Olffen, M, Remmelts, HJ, de Vries, H, Bos, AF. The prognostic value of amplitude integrated EEG in neonatal sepsis and/or meningitis. Acta Paediatrica. 2010;99(2):194200.Google Scholar
Mizrahi, EM, Tharp, BR. A characteristic EEG pattern in neonatal herpes simplex encephalitis. Neurology. 1982;32(11):1215–20.Google Scholar
Riggs, JE. Neurologic manifestations of electrolyte disturbances. Neurol Clin. 2002;20(1):227–39, vii.Google Scholar
Lin, CC. [EEG manifestations in metabolic encephalopathy]. Acta Neurol Taiwan. 2005;14(3):151–61.Google ScholarPubMed
Kaplan, PW. The EEG in metabolic encephalopathy and coma. J Clin Neurophysiol. 2004;21(5):307–18.Google Scholar
Kossoff, EH, Silvia, MT, Maret, A, Carakushansky, M, Vining, EP. Neonatal hypocalcemic seizures: case report and literature review. J Child Neurol. 2002;17(3):236–9.Google Scholar
Nunes, ML, Penela, MM, da Costa, JC. Differences in the dynamics of frontal sharp transients in normal and hypoglycemic newborns. Clin Neurophysiol. 2000;111(2):305–10.Google ScholarPubMed
Moore, AM, Perlman, M. Symptomatic hypoglycemia in otherwise healthy, breastfed term newborns. Pediatrics. 1999;103 (4 Pt 1):837–9.Google Scholar
Yalnizoglu, D, Haliloglu, G, Turanli, G, Cila, A, Topcu, M. Neurologic outcome in patients with MRI pattern of damage typical for neonatal hypoglycemia. Brain Dev. 2007;29(5):285–92.Google Scholar
Tam, EW, Widjaja, E, Blaser, SI et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia. Pediatrics. 2008;122(3):507–12.Google Scholar
Barkovich, AJ, Ali, FA, Rowley, HA, Bass, N. Imaging patterns of neonatal hypoglycemia. AJNR Am J Neuroradiol. 1998;19(3):523–8.Google Scholar
Vannucci, RC, Vannucci, SJ. Hypoglycemic brain injury. Semin Neonatol. 2001;6(2):147–55.Google Scholar
Caraballo, RH, Sakr, D, Mozzi, M, et al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr Neurol. 2004;31(1):24–9.Google Scholar
Fong, CY, Harvey, AS. Variable outcome for epilepsy after neonatal hypoglycaemia. Dev Med Child Neurol. 2014;56(11):1093–9.Google Scholar
Volpe, JJ. Neurology of the Newborn. 5th ed. Elsevier Health Sciences; 2008.Google Scholar
Strober, JB, Bienkowski, RS, Maytal, J. The incidence of acute and remote seizures in children with intraventricular hemorrhage. Clin Pediatr (Phila). 1997;36(11):643–7.Google Scholar
Lloyd, RO, O’Toole, JM, Pavlidis, E, Filan, PM, Boylan, GB. Electrographic Seizures during the Early Postnatal Period in Preterm Infants. J Pediatr. 2017;187:18–25 e2.CrossRefGoogle ScholarPubMed
Hellstrom-Westas, L, Klette, H, Thorngren-Jerneck, K, Rosen, I. Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics. 2001;32(6):319–24.Google Scholar
Watanabe, K, Hakamada, S, Kuroyanagi, M, Yamazaki, T, Takeuchi, T. Electroencephalographic study of intraventricular hemorrhage in the preterm newborn. Neuropediatrics. 1983;14(4):225–30.CrossRefGoogle ScholarPubMed
Watanabe, K, Hayakawa, F, Okumura, A. Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev. 1999;21(6):361–72.Google Scholar
Watanabe, H. The neonatal electroencephalogram and sleep-cycle patterns. In Eyre, J, editor. The Neurophysiological Examination of the Newborn Infant Clinics in Developmental Medicine. London: Mac Keith Press; 1992, pp. 1147.Google Scholar
Tharp, BR, Scher, MS, Clancy, RR. Serial EEGs in normal and abnormal infants with birth weights less than 1200 grams–a prospective study with long term follow-up. Neuropediatrics. 1989;20(2):6472.Google Scholar
Clancy, RR, Tharp, BR. Positive Rolandic sharp waves in the electroencephalograms of premature neonates with intraventricular hemorrhage. Electroencephalogr Clin Neurophysiol. 1984;57(5):395404.Google Scholar
Novotny, EJ, Jr., Tharp, BR, Coen, RW, et al. Positive Rolandic sharp waves in the EEG of the premature infant. Neurology. 1987;37(9):1481–6.Google Scholar
Aso, K, Abdab-Barmada, M, Scher, MS. EEG and the neuropathology in premature neonates with intraventricular hemorrhage. J Clin Neurophysiol. 1993;10(3):304–13.Google Scholar
Olischar, M, Klebermass, K, Kuhle, S, et al. Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. Childs Nerv Syst. 2004;20(1):41–5.Google Scholar
Scoppa, A, Casani, A, Cocca, F, et al. aEEG in preterm infants. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:139–40.Google Scholar
Baud, O, d’Allest, AM, Lacaze-Masmonteil, T, et al. The early diagnosis of periventricular leukomalacia in premature infants with positive Rolandic sharp waves on serial electroencephalography. J Pediatr. 1998;132(5):813–7.Google Scholar
Okumura, A, Hayakawa, F, Kato, T, Kuno, K, Watanabe, K. Positive Rolandic sharp waves in preterm infants with periventricular leukomalacia: their relation to background electroencephalographic abnormalities. Neuropediatrics. 1999;30(6):278–82.Google Scholar
Okumura, A, Hayakawa, F, Kato, T, Kuno, K, Watanabe, K. Developmental outcome and types of chronic-stage EEG abnormalities in preterm infants. Dev Med Child Neurol. 2002;44(11):729–34.Google Scholar
Kidokoro, H, Okumura, A, Hayakawa, F, et al. Chronologic changes in neonatal EEG findings in periventricular leukomalacia. Pediatrics. 2009;124(3):e468–75.Google Scholar
Kubota, T, Okumura, A, Hayakawa, F, et al. Combination of neonatal electroencephalography and ultrasonography: sensitive means of early diagnosis of periventricular leukomalacia. Brain Dev. 2002;24(7):698702.Google Scholar
Inder, TE, Buckland, L, Williams, CE, et al. Lowered electroencephalographic spectral edge frequency predicts the presence of cerebral white matter injury in premature infants. Pediatrics. 2003;111(1):2733.Google Scholar
Kohelet, D, Shochat, R, Lusky, A, Reichman, B, Israel Neonatal, N. Risk factors for seizures in very low birthweight infants with periventricular leukomalacia. J Child Neurol. 2006;21(11):965–70.Google Scholar
Hawgood, S, Spong, J, Yu, VY. Intraventricular hemorrhage. Incidence and outcome in a population of very-low-birth-weight infants. Am J Dis Child. 1984;138(2):136–9.Google Scholar
Watanabe, K, Iwase, K. Spindle-like fast rhythms in the EEGs of low-birth weight infants. Dev Med Child Neurol. 1972;14(3):373–81.CrossRefGoogle ScholarPubMed
Hudak, ML, Tan, RC. Committee on Drugs; Committee on Fetus and Newborn; American Academy of Pediatrics. Neonatal drug withdrawal. Pediatrics. 2012;129(2):e540–60.Google Scholar
Doberczak, TM SS, Cutler, R, Senie, RT, Loucopoulos, JA, Kandall, SR. One-year follow-up of infants with abstinence-associated seizures. Arch Neurol. 1988;45(6):649–53.Google Scholar
Doberczak, TM, Shanzer, S, Senie, RT, Kandall, SR. Neonatal neurologic and electroencephalographic effects of intrauterine cocaine exposure. J Pediatr. 1988;113(2):354–8.Google Scholar

References

Shellhaas, RA, Wusthoff, CJ, Tsuchida, TN, et al; Neonatal Seizure Registry. Profile of neonatal epilepsies: characteristics of a prospective US cohort. Neurology. 2017 Aug 29;89(9):893–9.Google Scholar
Axeen, EJT, Olson, HE. Neonatal epilepsy genetics. Semin Fetal Neonatal Med. 2018 Jun;23(3):197203.Google Scholar
Sheth, RD, Hobbs, GR, Mullett, M. Neonatal seizures: incidence, onset and aetiology by gestational age. J Perinatol. 1999;19:40e3.Google Scholar
Tekgul, H, Gauvreau, K, Soul, J, et al. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics. 2006;117:1270–80.Google Scholar
Singh, NA, Charlier, C, Stauffer, D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18:25–9.Google Scholar
Weckhuysen, S, Mandelstam, S, Suls, A, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71:1525.Google Scholar
Heron, SE, Crossland, KM, Andermann, E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet. 2002;360:851–2.Google Scholar
Dulac, O, Plecko, B, Gataullina, S, et al. Occasional seizures, epilepsy, and inborn errors of metabolism. Lancet Neurol. 2014;13:727–39.Google Scholar
Santarone, ME, Pietrafusa, N, Fusco, L. Neonatal seizures: When semiology points to etiology. Seizure. 2020 Aug;80:1615.Google Scholar
Nunes, ML, Yozawitz, EG, Zuberi, S, et al; Task Force on Neonatal Seizures, ILAE Commission on Classification & Terminology. Neonatal seizures: Is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open. 2019 Jan 25;4(1):1029; 20.Google Scholar
Olson, HE, Kelly, M, LaCoursiere, CM, et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol. 2017 Mar;81(3):41929.Google Scholar
Murray, DM, Boylan, GB, Ali, I, et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93:F187–91.Google Scholar
Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011;28: 611–17.Google Scholar
Wusthoff, CJ. Diagnosing neonatal seizures and status epilepticus. J Clin Neurophysiol. 2013;30:115–21.Google Scholar
Clancy, RR, Legido, A. The exact ictal and interictal duration of electroencephalographic neonatal seizures. Epilepsia. 1987;28:537–41.Google Scholar
Abend, NS, Wusthoff, CJ. Neonatal seizures and status epilepticus. J Clin Neurophysiol. 2012;29:441–8.Google Scholar
Pressler RM, Cilio MR, Mizrahi E, et al; The ILAE classification of seizures and the epilepsies. Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia. 22021;62(3):615–628.Google Scholar
Fusco, L, Vigevano, F. Ictal clinical electroencephalographic findings of spasms in West syndrome. Epilepsia. 1993;34:671–8.Google Scholar
Watanabe, K, Negoro, T, Okumura, A. Symptomatology of infantile spasms. Brain Dev. 2001;23:453–66.Google Scholar
Vigevano, F, Fusco, L, Pachatz, C. Neurophysiology of spasms. Brain Dev. 2001;23:467–72.Google Scholar
Nariai, H, Nagasawa, T, Juhász, C, et al. Statistical mapping of ictal high-frequency oscillations in epileptic spasms. Epilepsia. 2011;52:6374.Google Scholar
Mizrahi, EM, Kellaway, P. Diagnosis and Management of Neonatal Seizures. New York: Lippincott-Raven; 1998.Google Scholar
Watanabe, K, Hara, K, Iwase, K. The evolution of neurophysiological features in holoprosencephaly. Neuropaediatrie. 1976;7:1941.Google Scholar
Yamamoto, N, Watanabe, K, Negoro, T, et al. Complex partial seizures in children: ictal manifestations and their relation to clinical course. Neurology. 1987;37:1379–82.Google Scholar
Ohtahara, S, Yamatogi, Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol. 2003;20:398407.Google Scholar
Watanabe, K, Miyazaki, S, Hara, K, et al. Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiol. 1980;49:618–25.Google Scholar
Shah, NA, Wusthoff, CJ. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child Educ Pract Ed. 2015;100:7581.Google Scholar
Hellström-Westas, L, de Vries, LS, Rosén, I. An Atlas of Amplitude-Integrated EEGs in the Newborn, 2nd ed. London: Informa Healthcare; 2003.Google Scholar
Kidokoro, H, Inder, T, Okumura, A, et al. What does cyclicity on amplitude-integrated EEG mean? J Perinatol. 2012;32:565–9.Google Scholar
Ito, M, Kidokoro, H, Sugiyama, Y, et al. Paradoxical downward seizure pattern on amplitude-integrated electroencephalogram. J Perinatol. 2014;34:642–4.Google Scholar
Vilan, A, Mendes Ribeiro, J, Striano, P, et al. A distinctive ictal amplitude-integrated electroencephalography pattern in newborns with neonatal epilepsy associated with KCNQ2 mutations. Neonatology. 2017;112(4):38793.Google Scholar
Wusthoff, CJ, Shellhaas, RA, Clancy, RR. Limitations of single-channel EEG on the forehead for neonatal seizure detection. J Perinatol. 2009;29:237–42.Google Scholar
Kidokoro, H, Kubota, T, Hayakawa, M, et al. Neonatal seizure identification on reduced channel EEG. Arch Dis Child Fetal Neonatal Ed. 2013;98:F359–61.Google Scholar
van Rooij, LG, Toet, MC, van Huffelen, AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010;125:e358–66.Google Scholar
Rett, A, Teubel, R. Neugeborenenkrämpfe im Rahmen einer epileptisch belasten Familie. Wiener Klinische Wochenschrif. 1964;76:609–13.Google Scholar
Biervert, C, Schroeder, BC, Kubisch, C, et al. A potassium channel mutation in neonatal human epilepsy. Science. 1998 Jan 16;279(5349):403–6.Google Scholar
Grinton, BE, Heron, SE, Pelekanos, JT, et al. Familial neonatal seizures in 36 families: clinical and genetic features correlate with outcome. Epilepsia. 2015 Jul;56(7):1071–80.Google Scholar
Charlier, C, Singh, NA, Ryan, SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet. 1998;18:53–5.Google Scholar
Dehan, M, Quillerou, D, Navelet, Y, et al. Convulsions in the fifth day of life: a new syndrome? Arch Fr Pediatr. 1977;34:730–42. [in French]Google Scholar
Ronen, GM, Rosales, TO, Connolly, M, Anderson, VE, Leppert, M. Seizure characteristics in chromosome 20 benign familial neonatal convulsions. Neurology. 1993 Jul;43(7):1355–60.Google Scholar
Okumura, A, Ishii, A, Shimojima, K, et al. Phenotypes of children with 20q13.3 microdeletion affecting KCNQ2 and CHRNA4. Epileptic Disord. 2015;17:165–71.Google Scholar
Ohtahara, S, Ishida, T, Oka, E, et al. On the specific age-dependent epileptic syndromes: the early-infantile epileptic encephalopathy with suppression-burst. No To Hattatsu. 1976;8:270–80. [in Japanese]Google Scholar
Aicardi, J, Goutiéres, F. Encéphalopathie myoclonique néonatale. Rev Electroencephalogr Neurophysiol Clin. 1978;899–101. [in French]Google Scholar
Ohtahara, S, Ohtsuka, Y, Erba, G. Early epileptic encephalopathy with suppression-burst. In Jr., Engel J, Pedley, T, editors. Epilepsy: A Comprehensive Textbook. Volume 3. Philadelphia: Lippincott-Raven; 1998, pp. 2257–61.Google Scholar
Kato, M, Saitoh, S, Kamei, A, et al. A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet. 2007;81:361–6.Google Scholar
Deprez, L, Weckhuysen, S, Holmgren, P, et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology. 2010 Sep 28;75(13):1159–65.Google Scholar
Saitsu, H, Kato, M, Mizuguchi, T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40:782–8.Google Scholar
Trump, N, McTague, A, Brittain, H, et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet. 2016 May;53(5):310–17.Google Scholar
Ohtahara, S, Ohtsuka, Y, Yamatogi, Y, Oka, E. The early-infantile epileptic encephalopathy with suppression-burst: developmental aspects. Brain Dev. 1987;9(4):371–6.Google Scholar
Schlumberger, E, Dulac, O, Pluoin, P. Early infantile syndrome(s) with suppression-burst: nosological consideration. In Roger, J, Bureau, M, Drave, C, et al., editors. Epileptic Syndromes of Infancy, Childhood and Adolescence, 2nd ed. London: John Libbey; 1992, pp. 3542.Google Scholar
Backx, L, Ceulemans, B, Vermeesch, JR, et al. Early myoclonic encephalopathy caused by a disruption of the neuregulin-1 receptor ErbB4. Eur J Hum Genet. 2009;17:378–82.Google Scholar
Hansen, J, Snow, C, Tuttle, E, et al. De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet. 2015;96:682–90.Google Scholar
Weckhuysen, S, Ivanovic, V, Hendrickx, R, et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology. 2013;81:1697–703.Google Scholar
Okumura, A, Yamamoto, T, Kurahashi, H, et al. Epilepsies in children with 2q24.3 deletion/duplication. J Pediatr Epilepsy. 2015;4:816.Google Scholar
Ohba, C, Kato, M, Takahashi, N, et al. De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia. 2015;56: e121–8.Google Scholar
Olischar, M, Shany, E, Aygün, C, et al. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology. 2012;102:203–11.Google Scholar
Nabbout, R, Soufflet, C, Plouin, P, et al. Pyridoxine dependent epilepsy: a suggestive electroclinical pattern. Arch Dis Child Fetal Neonatal Ed. 1999;81:F125–9.Google Scholar
Bok, LA, Maurits, NM, Willemsen, MA, et al. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia. 2010 Dec;51(12):2406–11.Google Scholar
Mills, PB, Camuzeaux, SS, Footitt, EJ, et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain. 2014;137:1350–60.Google Scholar
Schmitt, B, Baumgartner, M, Mills, PB, et al. Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency. Dev Med Child Neurol. 2010 Jul;52(7):e133–42.Google Scholar
Kotulska, K, Jurkiewicz, E, Domańska-Pakieła, D, et al. Epilepsy in newborns with tuberous sclerosis complex. Eur J Paediatr Neurol. 2014;18:714–21.Google Scholar
Ikeno, M, Okumura, A, Abe, S, et al. Clinically silent seizures in a neonate with tuberous sclerosis. Pediatr Int. 2016;58:5861.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×