Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T15:41:45.387Z Has data issue: false hasContentIssue false

19 - Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Jane Carver
Affiliation:
Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

The term “conditionally essential” has been used to describe the role of choline, inositol, taurine, arginine, glutamine, and nucleotides in human nutrition. The biochemical pathways to synthesize these nutrients are present, and their absence from the diet does not lead to a classical clinical deficiency syndrome. However, under certain conditions, the biosynthetic capacity may be below functional metabolic demands. The conditions under which these nutrients may become essential include prematurity, certain disease states, periods of limited nutrient intake or rapid growth, and the presence of regulatory or developmental factors that interfere with full expression of the endogenous synthetic capacity. Under these conditions, dietary intake of the nutrient may optimize tissue function.

Several of the conditionally essential nutrients are present in significantly higher quantities in human milk versus infant formulas, and several are added to term and/or preterm formulas. On-going research will help to clarify their roles in neonatal nutrition and metabolism.

Choline

Choline was classified in 1998 as an essential nutrient for humans by the Food and Nutrition Board of the Institute of Medicine of the National Academy of Sciences. The Board recognized that fetal development and infancy constitute periods of increased demand for choline. The classification of choline as an essential nutrient will likely stimulate renewed interest and research in its role in the developing infant.

Choline has a variety of biological functions. It is a precursor for the neurotransmitter acetylcholine, and for two signaling lipids, platelet-activating factor and sphingosylphosphorylcholine.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uauy, R., Greene, H., Heird, W. Conditionally essential nutrients: cysteine, taurine, tyrosine, arginine, glutamine, choline, inositol, and nucleotides. In Tsang, R., Lucas, A., Uauy, R., Zlotkin, S., eds. Nutritional Needs of the Preterm Infant. Pawling, NY: Caduceus Medical Publishers; 1993:267–80.Google Scholar
Blusztajn, J. K.Choline, a vital amine. Science 1998;281:794–5.CrossRefGoogle ScholarPubMed
Zeisel, S. H.Choline: an essential nutrient for humans. Nutrition 2000;16:669–71.CrossRefGoogle ScholarPubMed
Zeisel, S. H. Choline: essential for brain development and function. In Barness, L. A., ed. Advances in Pediatrics. Chicago, IL: Mosby-Year Book; 1997:263–95.Google Scholar
Zeisel, S. H.Choline: needed for normal development of memory. J. Am. Coll. Nutr. 2000;19:528S-31S.CrossRefGoogle Scholar
Buchman, A. L., Ament, M. E., Sohel, M.et al.Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. J. Parenter. Enteral Nutr. 2001;25:260–8.CrossRefGoogle ScholarPubMed
Chawla, R. K., Wolf, D. C., Kutner, M. H., Bonkovsky, H. L.Choline may be an essential nutrient in malnourished patients with cirrhosis. Gastroenterology 1989;97:1514–20.CrossRefGoogle ScholarPubMed
Sheard, N., Tayek, J., Bistrian, B., Blackburn, G., Zeisel, S. H.Plasma choline concentrations in humans fed parenterally. Am. J. Clin. Nutr. 1986;43:219–24.CrossRefGoogle ScholarPubMed
Kaminski, D. L., Adams, A., Jellinek, M.The effect of hyperalimentation on hepatic lipid content and lipogenic enzyme activity in rats and man. Surgery 1980;88:93–100.Google ScholarPubMed
Chandar, N., Lombardi, B.Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcinogenesis 1988;9:259–63.CrossRefGoogle Scholar
Buchman, A.Relation between choline and carnitine homeostasis. Am. J. Clin. Nutr. 1997;65:574–5.CrossRefGoogle ScholarPubMed
Dodson, W., Sachan, D.Choline supplementation reduces urinary carnitine excretion in humans. Am. J. Clin. Nutr. 1996;63:904–10.CrossRefGoogle ScholarPubMed
Meck, W. H., Williams, C. L.Perinatal choline supplementation increases the threshold for chunking in spatial memory. Neuroreport 1997;8:3053–9.CrossRefGoogle ScholarPubMed
Meck, W. H., Williams, C. L.Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 1997;8:2831–5.CrossRefGoogle ScholarPubMed
Meck, W. H., Williams, C. L.Choline supplementation during prenatal development reduces proactive interference in spatial memory. Brain Res. Dev. Brain Res. 1999;118:51–9.CrossRefGoogle ScholarPubMed
Albright, C. D., Friedrich, C. B., Brown, E. C., Mar, M. H., Zeisel, S. H.Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Brain Res. Dev. Brain Res. 1999;115:123–9.CrossRefGoogle ScholarPubMed
Albright, C. D., Mar, M. H., Friedrich, C. B.et al.Maternal choline availability alters the localization of p15Ink4B and p27Kip1 cyclin-dependent kinase inhibitors in the developing fetal rat brain hippocampus. Dev. Neurosci. 2001;23:100–6.CrossRefGoogle ScholarPubMed
Cohen, E., Wurthman, R.Brain acetylcholine: control by dietary choline. Science 1976;191:561–2.CrossRefGoogle ScholarPubMed
Fernstrom, J. D.Can nutrient supplements modify brain function?Am. J. Clin. Nutr. 2000;71:1669S-75S.CrossRefGoogle ScholarPubMed
Klein, J., Koppen, A., Loffelholz, K.Regulation of free choline in rat brain: dietary and pharmacological manipulations. Neurochem. Intl. 1998;32:479–85.CrossRefGoogle ScholarPubMed
Klein, C. J., ed. Nutrient requirements for preterm infant formulas. A report from the American Society for Nutritional Sciences, Life Sciences Research Office. J. Nutr. 2002;132:1431S–49S.Google Scholar
Raiten, D., Talbot, J., Waters, J. eds. Assessment of nutrient requirements for infant formulas. A report from the American Society for Nutritional Sciences, Life Sciences Research Office. J. Nutr. 1998;128:2059S–293S.Google Scholar
Holub, B. J.The nutritional importance of inositol and the phosphoinositides. N. Engl. J. Med. 1992;326:1285–7.CrossRefGoogle ScholarPubMed
Holub, B. J.The cellular forms and functions of the inositol phospholipids and their metabolic derivatives. Nutr. Rev. 1987;45:65–71.CrossRefGoogle ScholarPubMed
Kirk, C. J., Maccallum, S. H., Michell, R. H., Barker, C. J.Inositol phosphates in receptor-mediated cell signaling: metabolic origins and interrelationships. Biotechnol. Appl. Biochem. 1990;12:489–95.Google ScholarPubMed
Holub, B. J.Metabolism and function of myo-inositol and inositol phospholipids. Ann. Rev. Nutr. 1986;6:563–97.CrossRefGoogle ScholarPubMed
Lewin, L. M., Melmed, S., Passwell, J. H.et al.Myoinositol in human neonates: serum concentrations and renal handling. Pediatr. Res. 1978;12:3–6.CrossRefGoogle ScholarPubMed
Bromberger, P., Hallman, M.Myoinositol in small preterm infants: relationship between intake and serum concentration. J. Pediatr. Gastroenterol. Nutr. 1986;5:455–8.CrossRefGoogle ScholarPubMed
Burton, L. E., Ray, R. E., Bradford, J. R.et al.Myo-inositol metabolism in the neonatal and developing rat fed a myo-inositol-free diet. J. Nutr. 1976;106:1610–16.CrossRefGoogle ScholarPubMed
Beach, D. C., Flick, P. K.Early effect of myo-inositol deficiency on fatty acid synthetic enzymes of rat liver. Biochim. Biophys. Acta. 1982;711:452–9.CrossRefGoogle ScholarPubMed
Clements, R. S. Jr., Vourganti, B., Kuba, T., Oh, S. J., Darnell, B.Dietary myo-inositol intake and peripheral nerve function in diabetic neuropathy. Metabolism 1979;28:477–83.CrossRefGoogle ScholarPubMed
Haneda, M., Kikkawa, R., Arimura, T.et al.Glucose inhibits myo-inositol uptake and reduces myo-inositol content in cultured rat glomerular mesangial cells. Metabolism 1990;39:40–5.CrossRefGoogle ScholarPubMed
Pugliese, G., Tilton, R. G., Speedy, A.et al.Modulation of hemodynamic and vascular filtration changes in diabetic rats by dietary myo-inositol. Diabetes 1990;39:312–22.CrossRefGoogle ScholarPubMed
Kim, J., Kyriazi, H., Greene, D. A.Normalization of Na(+)−K(+)−adenosine triphosphatease activity in isolated membrane fraction from sciatic nerves of streptozocin-induced diabetic rats by dietary myo-inositol supplementation in vivo or protein kinase C agonists in vitro. Diabetes 1991;40:558–67.CrossRefGoogle ScholarPubMed
Straaten, H. W., Copp, A. J.Curly tail: a 50-year history of the mouse spina bifida model. Anat. Embryol. (Berl). 2001;203:225–37.CrossRefGoogle ScholarPubMed
Pereira, G. R., Baker, L., Egler, J., Corcoran, L., Chiavacci, R.Serum myoinositol concentrations in premature infants fed human milk, formula for infants, and parenteral nutrition. Am. J. Clin. Nutr. 1990;51:589–93.CrossRefGoogle ScholarPubMed
Friedman, C. A., McVey, J., Borne, M. J.et al.Relationship between serum inositol concentration and development of retinopathy of prematurity: a prospective study. J. Pediatr. Ophthalmol. Strabismus 2000;37:79–86.Google ScholarPubMed
Hallman, M., Arjomaa, P., Hoppu, K.Inositol supplementation in respiratory distress syndrome: relationship between serum concentration, renal excretion, and lung effluent phospholipids. J. Pediatr. 1987;110:604–10.CrossRefGoogle ScholarPubMed
Hallman, M., Bry, K., Hoppu, K., Lappi, M., Pohjavuori, M.Inositol supplementation in premature infants with respiratory distress syndrome. N. Engl. J. Med. 1992;326:1233–9.CrossRefGoogle ScholarPubMed
Carver, J. D., Stromquist, C. I., Benford, V. J.et al.Postnatal inositol levels in preterm infants. J. Perinatol. 1997;17:389–92.Google ScholarPubMed
Hallman, M., Saugstad, O. D., Porreco, R. P., Epstein, B. L., Gluck, L.Role of myoinositol in regulation of surfactant phospholipids in the newborn. Early Hum. Dev. 1985;10:245–54.CrossRefGoogle ScholarPubMed
Howlett, A., Ohlsson, A.Inositol for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2000:CD000366.Google ScholarPubMed
Hallman, M., Slivka, S., Wozniak, P., Sills, J.Perinatal development of myoinositol uptake into lung cells: surfactant phosphatidylglycerol and phosphatidylinositol synthesis in the rabbit. Pediatr. Res. 1986;20:179–85.CrossRefGoogle ScholarPubMed
Hallman, M., Jarvenpaa, A. L., Pohjavuori, M.Respiratory distress syndrome and inositol supplementation in preterm infants. Arch. Dis. Child. 1986;61:1076–83.CrossRefGoogle ScholarPubMed
Chesney, R. W., Helms, R. A., Christensen, M.et al.An updated view of the value of taurine in infant nutrition. Adv. Pediatr. 1998;45:179–200.Google ScholarPubMed
Boehm, G., Braun, W., Moro, G., Minoli, I.Bile acid concentrations in serum and duodenal aspirates of healthy preterm infants: effects of gestational and postnatal age. Biol. Neonate. 1997;71:207–14.CrossRefGoogle ScholarPubMed
Strandvik, B., Wahlen, E., Wikstrom, S. A.The urinary bile acid excretion in healthy premature and full-term infants during the neonatal period. Scand. J. Clin. Lab. Invest. 1994;54:1–10.CrossRefGoogle ScholarPubMed
Gaull, G. E., Rassin, D. K., Raiha, N. C., Heinonen, K.Milk protein quantity and quality in low-birth-weight infants. III. Effects on sulfur amino acids in plasma and urine. J. Pediatr. 1977;90:348–55.CrossRefGoogle ScholarPubMed
Rassin, D. K., Gaull, G. E., Jarvenpaa, A. L., Raiha, N. C.Feeding the low-birth-weight infant: II. Effects of taurine and cholesterol supplementation on amino acids and cholesterol. Pediatrics. 1983;71:179–86.Google ScholarPubMed
Sturman, J. A., Gaull, G., Raiha, N. C.Absence of cystathionase in human fetal liver: is cysteine essential?Science 1970;169:74–6.CrossRefGoogle ScholarPubMed
Vinton, N. E., Laidlaw, S. A., Ament, M. E., Kopple, J. D.Taurine concentrations in plasma, blood cells, and urine of children undergoing long-term total parenteral nutrition. Pediatr. Res. 1987;21:399–403.CrossRefGoogle ScholarPubMed
Neuringer, M., Palackal, T., Sturman, J. A., Imaki, H.Effects of postnatal taurine deprivation on visual cortex development in rhesus monkeys through one year of age. Adv. Exp. Med. Biol. 1994;359:385–92.CrossRefGoogle ScholarPubMed
Neuringer, M., Sturman, J.Visual acuity loss in rhesus monkey infants fed a taurine-free human infant formula. J. Neurosci. Res. 1987;18:597–601.CrossRefGoogle ScholarPubMed
Imaki, H., Jacobson, S. G., Kemp, C. M.et al.Retinal morphology and visual pigment levels in 6- and 12-month-old rhesus monkeys fed a taurine-free human infant formula. J. Neurosci. Res. 1993;36:290–304.CrossRefGoogle ScholarPubMed
Imaki, H., Neuringer, M., Sturman, J.Long-term effects on retina of rhesus monkeys fed taurine-free human infant formula. Adv. Exp. Med. Biol. 1996;403:351–60.CrossRefGoogle ScholarPubMed
Geggel, H. S., Ament, M. E., Heckenlively, J. R., Martin, D. A., Kopple, J. D.Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N. Engl. J. Med. 1985;312:142–6.CrossRefGoogle ScholarPubMed
Vinton, N. E., Heckenlively, J. R., Laidlaw, S. A.et al.Visual function in patients undergoing long-term total parenteral nutrition. Am. J. Clin. Nutr. 1990;52:895–902.CrossRefGoogle ScholarPubMed
Kopple, J. D., Vinton, N. E., Laidlaw, S. A., Ament, M. E.Effect of intravenous taurine supplementation on plasma, blood cell, and urine taurine concentrations in adults undergoing long-term parenteral nutrition. Am. J. Clin. Nutr. 1990;52:846–53.CrossRefGoogle ScholarPubMed
Vinton, N. E., Laidlaw, S. A., Ament, M. E., Kopple, J. D.Taurine concentrations in plasma and blood cells of patients undergoing long-term parenteral nutrition. Am. J. Clin. Nutr. 1986;44:398–404.CrossRefGoogle ScholarPubMed
Helms, R. A., Christensen, M. L., Storm, M. C., Chesney, R. W.Adequacy of sulfur amino acid intake in infants receiving parenteral nutrition. J. Nutr. Biochem. 1995;6:462–6.CrossRefGoogle Scholar
Zelikovic, I., Chesney, R. W., Friedman, A. L., Ahlfors, C. E.Taurine depletion in very low birth weight infants receiving prolonged total parenteral nutrition: role of renal immaturity. J. Pediatr. 1990;116:301–6.CrossRefGoogle ScholarPubMed
Han, X., Patters, A. B., Chesney, R. W.Transcriptional repression of taurine transporter gene (TauT) by p53 in renal cells. J. Biol. Chem. 2002;277:39266–73.CrossRefGoogle ScholarPubMed
Sturman, J. A., Messing, J. M., Rossi, S. S., Hofmann, A. F., Neuringer, M. D.Tissue taurine content and conjugated bile acid composition of rhesus monkey infants fed a human infant soy-protein formula with or without taurine supplementation for 3 months. Neurochem. Res. 1988;13:311–16.CrossRefGoogle ScholarPubMed
Lima, L., Obregon, F., Cubillos, S., Fazzino, F., Jaimes, I.Taurine as a micronutrient in development and regeneration of the central nervous system. Nutr. Neurosci. 2001;4:439–43.CrossRefGoogle ScholarPubMed
Tyson, J. E., Lasky, R., Flood, D.et al.Randomized trial of taurine supplementation for infants less than or equal to 1,300-gram birth weight: effect on auditory brainstem-evoked responses. Pediatrics 1989;83:406–15.Google ScholarPubMed
Howard, D., Thompson, D. F.Taurine: an essential amino acid to prevent cholestasis in neonates?Ann. Pharmacother. 1992;26:1390–2.CrossRefGoogle ScholarPubMed
Tazawa, Y., Yamada, M., Nakagawa, M., Konno, Y., Tada, K.Unconjugated, glycine-conjugated, taurine-conjugated bile acid nonsulfates and sulfates in urine of young infants with cholestasis. Acta Paediatr. Scand. 1984;73:392–7.CrossRefGoogle ScholarPubMed
Okamoto, E., Rassin, D. K., Zucker, C. L., Salen, G. S., Heird, W. C.Role of taurine in feeding the low-birth-weight infant. J. Pediatr. 1984;104:936–40.CrossRefGoogle ScholarPubMed
Wasserhess, P., Becker, M., Staab, D.Effect of taurine on synthesis of neutral and acidic sterols and fat absorption in preterm and full-term infants. Am. J. Clin. Nutr. 1993;58:349–53.CrossRefGoogle ScholarPubMed
Raiha, N. C., Fazzolari-Nesci, A., Boehm, G.Taurine supplementation prevents hyperaminoacidemia in growing term infants fed high-protein cow's milk formula. Acta Paediatr. 1996;85:1403–7.CrossRefGoogle ScholarPubMed
Zamboni, G., Piemonte, G., Bolner, A.et al.Influence of dietary taurine on vitamin D absorption. Acta Paediatr. 1993;82:811–15.CrossRefGoogle ScholarPubMed
Redmond, H. P., Stapleton, P. P., Neary, P., Bouchier-Hayes, D.Immunonutrition: the role of taurine. Nutrition 1998;14:599–604.CrossRefGoogle ScholarPubMed
Wu, G., Meininger, C., Knabe, D., Baze, F., Rhoads, J.Arginine nutrition in development, health and disease. Curr. Opin. Clin. Nutr. Met. Care 2000;3:59–66.CrossRefGoogle Scholar
Heird, W., Nicholson, J., Driscoll, J., Schullinger, J., Winters, R.Hyperammonemia resulting from intravenous alimentation using a mixture of synthetic l-amino acids: a preliminary report. J. Pediatr. 1972;81:162–5.CrossRefGoogle ScholarPubMed
Brunton, J. A., Ball, R. O., Pencharz, P. B.Current total parenteral nutrition solutions for the neonate are inadequate. Curr. Opin. Clin. Nutr. Metab. Care 2000;3:299–304.CrossRefGoogle ScholarPubMed
Brooke, O. G., Onubogu, O., Heath, R., Carter, N. D.Human milk and preterm formula compared for effects on growth and metabolism. Arch. Dis. Child. 1987;62:917–23.CrossRefGoogle ScholarPubMed
Tikanoja, T., Simell, O., Viikari, M., Jarvenpaa, A. L.Plasma amino acids in term neonates after a feed of human milk or formula. II. Characteristic changes in individual amino acids. Acta Paediatr. Scand. 1982;71:391–7.CrossRefGoogle ScholarPubMed
Alican, I., Kubes, P.A critical role for nitric oxide in intestinal barrier function and dysfunction. Am. J. Physiol. 1996;270:G225–37.Google ScholarPubMed
Wu, G.Intestinal mucosal amino acid catabolism. J. Nutr. 1998;128:1249–52.CrossRefGoogle ScholarPubMed
Caplan, M. S., Hedlund, E., Hill, N., MacKendrick, W.The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats. Gastroenterology 1994;106:346–52.CrossRefGoogle ScholarPubMed
Kubes, P.Ischemia-reperfusion in feline small intestine: a role for nitric oxide. Am. J. Physiol. 1993;264:G143–9.Google ScholarPubMed
MacKendrick, W., Caplan, M., Hsueh, W.Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat. Pediatr. Res. 1993;34:222–8.CrossRefGoogle ScholarPubMed
Zamora, S. A., Amin, H. J., McMillan, D. D.et al.Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J. Pediatr. 1997;131:226–32.CrossRefGoogle ScholarPubMed
Becker, R. M., Wu, G., Galanko, J. A.et al.Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 2000;137:785–93.CrossRefGoogle ScholarPubMed
Amin, H., Zamora, S., McMillan, D.et al.Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J. Pediatr. 2002;140:425–31.CrossRefGoogle ScholarPubMed
Neu, J.Arginine supplementation and the prevention of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. 2002;140:389–92.CrossRefGoogle ScholarPubMed
Zamora, S. A., Amin, H. J., McMillan, D. D.et al.Plasma L-arginine concentration, oxygenation index, and systemic blood pressure in premature infants. Crit. Care Med. 1998;26:1271–6.CrossRefGoogle ScholarPubMed
Castillo, L., DeRojas-Walker, T., Yu, Y. M.et al.Whole body arginine metabolism and nitric oxide synthesis in newborns with persistent pulmonary hypertension. Pediatr. Res. 1995;38:17–24.CrossRefGoogle ScholarPubMed
Vosatka, R., Hassoun, P., Harvey-Wilkes, K.Dietary L-arginine prevents fetal growth restriction in rats. Am. J. Obstet. Gynecol. 1998;178:242–6.CrossRefGoogle ScholarPubMed
Helmbrecht, G. D., Farhat, M. Y., Lochbaum, L.et al.L-arginine reverses the adverse pregnancy changes induced by nitric oxide synthase inhibition in the rat. Am. J. Obstet. Gynecol. 1996;175:800–5.CrossRefGoogle ScholarPubMed
Envoy, D., Lieberman, M., Fahey, T., Daly, J.Immunonutrition: the role of arginine. Nutrition 1998;14:611–17.Google Scholar
Yu, Y.-M., Sheridan, R., Burke, J.et al.Kinetics of plasma arginine and leucine in pediatric burn patients. Am. J. Clin. Nutr. 1996;64:60–6.CrossRefGoogle ScholarPubMed
Cooke, J. P., Tsao, P.Arginine: a new therapy for atherosclerosis?Circulation 1997;95:311–12.CrossRefGoogle ScholarPubMed
Wu, G., Meininger, C. J.Arginine nutrition and cardiovascular function. J. Nutr. 2000;130:2626–9.CrossRefGoogle ScholarPubMed
Creager, M. A., Gallagher, S. J., Girerd, X. J.et al.L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J. Clin. Invest. 1992;90:1248–53.CrossRefGoogle ScholarPubMed
Drexler, H., Fischell, T. A., Pinto, F. J.et al.Effect of L-arginine on coronary endothelial function in cardiac transplant recipients. Relation to vessel wall morphology. Circulation 1994;89:1615–23.CrossRefGoogle ScholarPubMed
Peters, H., Border, W. A., Ruckert, M.et al.l-Arginine supplementation accelerates renal fibrosis and shortens life span in experimental lupus nephritis. Kidney Int. 2003;63:1382–92.CrossRefGoogle ScholarPubMed
Andrews, F., Griffiths, R.Glutamine: essential for immune nutrition in the critically ill. Br. J. Nutr. 2002;87:S3–8.CrossRefGoogle ScholarPubMed
Burrin, D. G., Stoll, B.Key nutrients and growth factors for the neonatal gastrointestinal tract. Clin. Perinatol. 2002;29:65–96.CrossRefGoogle ScholarPubMed
Reeds, P. J., Burrin, D. G.Glutamine and the bowel. J. Nutr. 2001;131:2505S–8S; discussion 2523S–24S.CrossRefGoogle ScholarPubMed
Neu, J., DeMarco, V., Li, N.Glutamine: clinical applications and mechanisms of action. Curr. Opin. Clin. Nutr. Met. Care 2002;5:69–75.CrossRefGoogle ScholarPubMed
Karinch, A. M., Pan, M., Lin, C. M., Strange, R., Souba, W. W.Glutamine metabolism in sepsis and infection. J. Nutr. 2001;131:2535S–8S.CrossRefGoogle ScholarPubMed
Andrews, F., Griffiths, R.Glutamine-enhanced nutrition in the critically ill patient. Hosp. Med. 2002;63:144–7.CrossRefGoogle ScholarPubMed
Boelens, P. G., Nijveldt, R. J., Houdijk, A. P., Meijer, S., Leeuwen, P. A.Glutamine alimentation in catabolic state. J. Nutr. 2001;131:2569S–77S.CrossRefGoogle ScholarPubMed
Houdijk, A. P., Rijnsburger, E. R., Jansen, J.et al.Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 1998;352:772–6.CrossRefGoogle ScholarPubMed
Novak, F., Heyland, D. K., Avenell, A., Drover, J. W., Su, X.Glutamine supplementation in serious illness: a systematic review of the evidence. Crit. Care Med. 2002;30:2022–9.CrossRefGoogle Scholar
Duggan, C., Gannon, J., Walker, W. A.Protective nutrients and functional foods for the gastrointestinal tract. Am. J. Clin. Nutr. 2002;75:789–808.CrossRefGoogle ScholarPubMed
Kudsk, K. A.Effect of route and type of nutrition on intestine-derived inflammatory responses. Am. J. Surg. 2003;185:16–21.CrossRefGoogle ScholarPubMed
Neu, J.Glutamine in the fetus and critically ill low birth weight neonate: metabolism and mechanism of action. J. Nutr. 2001;131:258S–9S.CrossRefGoogle ScholarPubMed
He, Y., Chu, S. H., Walker, W. A.Nucleotide supplements alter proliferation and differentiation of cultured human (Caco-2) and rat (IEC-6) intestinal epithelial cells. J. Nutr. 1993;123:1017–27.Google ScholarPubMed
Postic, B., Holliday, N., Lewis, P.et al.Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr. Res. 2002;52:430–6.Google Scholar
Lacey, J. M., Crouch, J. B., Benfell, K.et al.The effects of glutamine-supplemented parenteral nutrition in premature infants. J. Parenter. Enteral Nutr. 1996;20:74–80.CrossRefGoogle ScholarPubMed
Neu, J., Roig, J., Meetze, W.et al.Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J. Pediatr. 1997;131:691–9.CrossRefGoogle ScholarPubMed
Dallas, M., Bowling, D., Roig, J., Auestad, N., Neu, J.Enteral glutamine supplementation for very-low-birth-weight infants decreases hospital costs. J. Parenter. Enteral Nutr. 1998;22:352–6.CrossRefGoogle ScholarPubMed
Robert, des C., Bacquer, O., Piloquet, H., Roze, J. C., Darmaun, D.Acute effects of intravenous glutamine supplementation on protein metabolism in very low birth weight infants: a stable isotope study. Pediatr. Res. 2002;51:87–93.CrossRefGoogle ScholarPubMed
Poindexter, B., Ehrenkranz, R. A., Stoll, B. J.et al.Parenteral glutamine supplementation in ELBW infants: a multicenter randomized clinical trial. Pediatr. Res. 2002;51:317A.Google Scholar
Vaughn, P., Thomas, P., Clark, R., Neu, J.Enteral glutamine supplementation and morbidity in low-birth-weight infants. Pediatr. Res. 2003;53:437A.Google Scholar
Carver, J., Walker, W.The role of nucleotides in human nutrition. J. Nutr. Biochem. 1995;6:58–72.CrossRefGoogle Scholar
Rudolph, F. B.The biochemistry and physiology of nucleotides. J. Nutr. 1994;124:124S–7S.CrossRefGoogle Scholar
Janas, L. M., Picciano, M. F.The nucleotide profile of human milk. Pediatr. Res. 1982;16:659–62.CrossRefGoogle ScholarPubMed
Carver, J. D.Dietary nucleotides: effects on the immune and gastrointestinal systems. Acta Paediatrica. 1999;430:83–8.CrossRefGoogle Scholar
Leach, J. L., Baxter, J. H., Molitor, B. E., Ramstack, M. B., Masor, M. L.Total potential available nucleosides of human milk by stage of lactation. Am. J. Clin. Nutr. 1995;61:1224–30.CrossRefGoogle Scholar
Thorell, L., Sjöberg, L. B., Hernell, O.Nucleotides in human milk: sources and metabolism by the newborn infant. Pediatr. Res. 1996;40:845–52.CrossRefGoogle ScholarPubMed
Walker, W. A.Exogenous nucleotides and gastrointestinal immunity. Transplant Proc. 1996;28:2438–41.Google ScholarPubMed
Uauy, R., Stingel, G., Thomas, R., Quan, R.Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. J. Pediatr. Gastroenterol. Nutr. 1990;10:497–503.CrossRefGoogle ScholarPubMed
López-Navarro, A. T., Ortega, M. A., Peragón, J.et al.Deprivation of dietary nucleotides decreases protein synthesis in the liver and small intestine in rats. Gastroenterology 1996;110:1760–9.CrossRefGoogle ScholarPubMed
LeLeiko, N. S., Walsh, M. J., Abraham, S. Gene expression in the intestine: the effect of dietary nucleotides. In Barness, L., DeVivo, D., Kaback, M.et al., eds. Advances in Pediatrics. St. Louis, MO: Mosby-Year Book; 1995:145–69.Google Scholar
Sanderson, I. R., He, Y.Nucleotide uptake and metabolism by intestinal epithelial cells. J. Nutr. 1994;124:131S–7S.CrossRefGoogle ScholarPubMed
Tanaka, M., Lee, K., Martinez-Augustin, O.et al.Exogenous nucleotides alter the proliferation, differentiation and apoptosis of human small intestinal epithelium. J. Nutr. 1996;126:424–33.CrossRefGoogle ScholarPubMed
Brunser, O., Espinoza, J., Araya, M., Cruchet, S., Gil, A.Effect of dietary nucleotide supplementation on diarrhoeal disease in infants. Acta Paediatrica 1994;83:188–91.CrossRefGoogle ScholarPubMed
Pickering, L. K., Granoff, D. M., Erickson, J. R.et al.Modulation of the immune system by human milk and infant formula containing nucleotides. Pediatrics 1998;101:242–9.CrossRefGoogle ScholarPubMed
Yau, K. T., Huang, C., Chen, W.et al.Effect of nucleotides on diarrhea and immune responses in healthy term infants in Taiwan. J. Pediatr. Gastr. Nutr. 2003;36:37–43.CrossRefGoogle ScholarPubMed
Balmer, S., Hanvey, L., Wharton, B.Diet and faecal flora in the newborn: nucleotides. Arch. Dis. Child. 1994;70:F137–40.CrossRefGoogle ScholarPubMed
Gil, A., Corral, E., Martinez, A., Molina, J.Effects of dietary nucleotides on the microbial pattern of faeces in the at term newborn infants. J. Clin. Nutr. Gastroent. 1986;1:127–32.Google Scholar
Carver, J. D., Sosa, R., Zaritt, J., Siktberg, M. R., Meyer, L.Dietary nucleotide effects on superior mesenteric artery blood flow in term infants. Pediatr. Res. 2000;45:284A.Google Scholar
Özkan, H., Ören, H., Erdag, N., Çevik, N.Breast milk versus infant formulas: effects on intestinal blood flow in neonates. Indian J. Pediatr. 1994;61:703–9.CrossRefGoogle ScholarPubMed
Carver, J. D., Saste, M., Sosa, R.et al.The effects of dietary nucleotides on intestinal blood flow in preterm infants. Pediatr. Res. 2002;52:425–9.CrossRefGoogle ScholarPubMed
Jyonouchi, H., Sun, S., Winship, T., Kuchan, M. J.Dietary ribonucleotides increase antigen-specific type 1 T-helper cells in the regional draining lymph nodes in young BALB/cJ mice. Nutrition 2003;19:41–6.CrossRefGoogle ScholarPubMed
Nagafuchi, S., Hachimura, S., Totsuka, M.et al.Dietary nucleotides can up-regulate antigen-specific Th1 immune responses and suppress antigen-specific IgE responses in mice. Intl. Arch. Aller. Immunol. 2000;122:33–41.CrossRefGoogle ScholarPubMed
Carver, J. D., Pimentel, B., Cox, W. I., Barness, L. A.Dietary nucleotide effects in formula-fed infants. Pediatrics 1991;88:359–63.Google Scholar
Martinez-Augustin, O., Boza, J. J., Del Pino, J. I.et al.Dietary nucleotides might influence the humoral immune response against cow's milk proteins in preterm neonates. Biol. Neonate. 1997;7:215–23.CrossRefGoogle Scholar
Navarro, J., Maldonado, J., Narbona, E.et al.Influence of dietary nucleotides on plasma immunoglobulin levels and lymphocyte subsets of preterm infants. Biofactors 1999;10:67–76.CrossRefGoogle ScholarPubMed
Cosgrove, M., Davies, D. P., Jenkins, H. R.Nucleotide supplementation and growth of term small for gestational age infants. Arch. Dis. Child. 1996;74:F122–5.CrossRefGoogle ScholarPubMed
Pita, M., Fernández, M., De-Lucchi, C.et al.Changes in the fatty acids pattern of red blood cell phospholipids induced by type of milk, dietary nucleotide supplementation, and postnatal age in preterm infants. J. Pediatr. Gastr. Nutr. 1988;7:740–7.CrossRefGoogle ScholarPubMed
Sánchez-Pozo, A., Ramírez, M., Gil, A.et al.Dietary nucleotides enhance plasma lecithin cholesterol acyl transferase activity and apolipoprotein A-IV concentration in preterm newborn infants. Pediatr. Res. 1995;37:328–33.CrossRefGoogle ScholarPubMed
Henderson, T., Homosh, M., Mehta, N., Angelus, P., Hamosh, P.Red blood cell phospholipid docosahexaenoic acid and archidonic acid concentrations in very low birth weight infants are not affected by nucleotide supplementation of premie formula and are lower than mother's own milk. Pediatr. Res. 1994;35:313A.Google Scholar
Woltil, H. A., Beusekom, C. M., Siemensma, A. D.et al.Erythrocyte and plasma cholesterol ester long-chain polyunsaturated fatty acids of low-birth-weight babies fed preterm formula with and without ribonucleotides: comparison with human milk. Am. J. Clin. Nutr. 1995;62:943–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×