Book contents
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
X-ray Variability in AGN
from IV - X-rays and Accretion Disks
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Summary
Introduction
X-ray emission provides ∼ 10% of the bolometric luminosity of a typical Seyfert galaxy and as X-ray photons of energy > 2 keV can penetrate column densities of > 1 × 1022 atoms cm−2, such observations provide the best observational probe available (with current instrumentation) of the active nucleus, and its immediate environment.
Variations cannot be observed faster than the light travel time, thus δt ∼ r/c gives an upper limit to the size of the emitting region. A variability timescale may be associated with the dynamical (orbital) timescale of the inner accretion disk. If the X-rays arise from r ∼ 5rs and rs = 2GM/c2 then t ∼ 50M6S (M6 are units of 106 solar mass). This is reasonable if a persistent period were found, but could be misleading otherwise.
Two other parameters of interest are efficiency η (of mass to energy conversion) and compactness ℓ. Efficiency, η ∼ 5 × 10−43dL/dt, if η > 0.1 an exotic mechanism is required (such as relativistic beaming). Compactness, ℓ = Lστ/Rmec3 (Svensson 1986; Guilbert, Fabian & Rees 1983). When ℓ > 10 the source becomes optically thick to γ-rays and pair production becomes important (assuming the spectrum extends to ∼> 1MeV), affecting the X-ray spectrum and the temporal behaviour (e.g., Mosalik & Sikora 1986; Fabian et al. 1986).
Historical
Ariel V and HEAO-1 established long term (days to years) variability as a property of AGN (e.g., Marshall, Warwick & Pounds 1981), with variations in amplitude of factors of ∼ 7 or so being common.
- Type
- Chapter
- Information
- The Nature of Compact Objects in Active Galactic NucleiProceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992, pp. 257 - 264Publisher: Cambridge University PressPrint publication year: 1994