Book contents
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Iron Lines from Ionized Discs
from IV - X-rays and Accretion Disks
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Summary
Abstract
The properties of the iron Kα line emitted by a photoionized accretion disc have been calculated for different source geometries.
The properties of the iron Kα fluorescence line emitted by an α-viscosity accretion disc illuminated by an external X-ray source have been calculated for different values of the disc accretion rate ṁ. The vertical ionization structure of the matter has been computed by using the numerical code described in. Two different source geometries have been studied: a point source located at 20 rg (=GM/c2) above the disc on its symmetry axis, and an extended source above the innermost part (r = 6 – 50rg) of the disc. Assuming α=0.1, a Schwarzschild black hole and a hard luminosity equal to the disc luminosity, we find that for large values of ṁ (≲ 0.2, in units of the critical value) the matter can be significantly ionized, and the iron line equivalent width can reach values as high as 250 eV for the point source, and up to about 400 eV for the extended source (while for neutral matter it is ∼150eV for a face-on disc). The line centroid energy, in the emitting rest frame, is significantly higher than 6.4 keV, the value for neutral iron. A further increase of ṁ (≲ 0.5) leads to a strong decrease of the line intensity, because the iron becomes fully stripped in the inner region of the disc.
- Type
- Chapter
- Information
- The Nature of Compact Objects in Active Galactic NucleiProceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992, pp. 304 - 305Publisher: Cambridge University PressPrint publication year: 1994