Book contents
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- Evidence for Anisotropy and Unification
- Any Evidence against Unified Schemes?
- Spectropolarimetry of Cygnus A
- Spectropolarimetery of the Ultraluminous Infrared Galaxy IRAS 110548–1131
- Are there Dusty Tori in Seyfert 2 Galaxies?
- Imaging Spectrophotometry of Extended-Emission Seyfert Galaxies
- Spectroscopy of the Extended Emission Line Regions in NGC 4388
- Evidence and Implications of Anisotropy in Seyfert Galaxies
- Collimated Radiation in NGC 4151
- A Dust Ring around the Nucleus of NGC 4151
- Evolution of Narrow Line Clouds
- Star Formation in NGC 5953
- Stellar Activity in the Seyfert Nucleus of NGC 1808
- Direct Evidence for Anisotropy: Radio Maps and their Relation to Optical Morphology
- The Radio-Optical Connection in AGN
- Knots in Extragalactic Radio Jets
- Radio Emission and the Nature of Compact Objects in AGN
- The Radio Properties of Hidden Seyfert 1's: Implications for Unified Models
- Anisotropic Optical Continuum Emission in Radio Quasars
- The UV Component in Distant Radio Galaxies
- A Connection between BL Lacertæ Objects and Flat-Spectrum Radio Quasars?
- The Difference between BL Lacs and QSOs
- The Evolutionary Unified Scheme and the θ-z Plane
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
The Difference between BL Lacs and QSOs
from I - Evidence and Implications of Anisotropy in AGN
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- Evidence for Anisotropy and Unification
- Any Evidence against Unified Schemes?
- Spectropolarimetry of Cygnus A
- Spectropolarimetery of the Ultraluminous Infrared Galaxy IRAS 110548–1131
- Are there Dusty Tori in Seyfert 2 Galaxies?
- Imaging Spectrophotometry of Extended-Emission Seyfert Galaxies
- Spectroscopy of the Extended Emission Line Regions in NGC 4388
- Evidence and Implications of Anisotropy in Seyfert Galaxies
- Collimated Radiation in NGC 4151
- A Dust Ring around the Nucleus of NGC 4151
- Evolution of Narrow Line Clouds
- Star Formation in NGC 5953
- Stellar Activity in the Seyfert Nucleus of NGC 1808
- Direct Evidence for Anisotropy: Radio Maps and their Relation to Optical Morphology
- The Radio-Optical Connection in AGN
- Knots in Extragalactic Radio Jets
- Radio Emission and the Nature of Compact Objects in AGN
- The Radio Properties of Hidden Seyfert 1's: Implications for Unified Models
- Anisotropic Optical Continuum Emission in Radio Quasars
- The UV Component in Distant Radio Galaxies
- A Connection between BL Lacertæ Objects and Flat-Spectrum Radio Quasars?
- The Difference between BL Lacs and QSOs
- The Evolutionary Unified Scheme and the θ-z Plane
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Summary
Abstract
We present evidence that BL Lac objects are a distinct class, rather than QSOs viewed close to, or within, the ‘critical cone’ of their collimated flow: both statistical analysis of the Stokes parameters and VLB polarimetry imply that the magnetic field structures in BL Lacs and QSOs are intrinsically different.
The low degree of polarization in the quiescent state of radio variable AGN, and the occurrence of occasional “rotation” events, have provided evidence for the presence of a highly tangled magnetic field. We would anticipate the Stokes parameters (Q, U) versus time plots of BL Lac objects and QSOs to show systematic differences if the relative strengths of tangled and ordered field components differ between classes. Fig. 1 illustrates typical Q-U plots for each class, derived from single dish observations, showing that the dispersion is large compared to the offset from zero for the BL Lac (interpreted as due to the presence of a weak mean field, so that evolution is dominated by the random walk of points in the Q-U plane as ‘new’ magnetic cells are advected into the window of observation), but small compared to the offset for the QSO (interpreted as due to a stronger mean field: the random walk is now about a point displaced from the origin by virtue of this stronger, axial field). A statistical analysis of 51 sources confirms this trend.
- Type
- Chapter
- Information
- The Nature of Compact Objects in Active Galactic NucleiProceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992, pp. 94 - 95Publisher: Cambridge University PressPrint publication year: 1994
- 1
- Cited by