Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Thermoelastic behavior of laminated composites
- 3 Strength of continuous-fiber composites
- 4 Short-fiber composites
- 5 Hybrid composites
- 6 Two-dimensional textile structural composites
- 7 Three-dimensional textile structural composites
- 8 Flexible composites
- 9 Nonlinear elastic finite deformation of flexible composites
- References
- Author index
- Subject index
1 - Introduction
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Thermoelastic behavior of laminated composites
- 3 Strength of continuous-fiber composites
- 4 Short-fiber composites
- 5 Hybrid composites
- 6 Two-dimensional textile structural composites
- 7 Three-dimensional textile structural composites
- 8 Flexible composites
- 9 Nonlinear elastic finite deformation of flexible composites
- References
- Author index
- Subject index
Summary
Evolution of engineering materials
Compared to the evolution of metals, polymers and ceramics, the advancement of fiber composite materials is relatively recent. Ashby (1987) presented a perspective on advanced materials and described the evolution of materials for mechanical and civil engineering. The relative importance of four classes of materials (metal, polymer, ceramic and composite) is shown in Fig. 1.1 as a function of time. Before 2000 BC, metals played almost no role as engineering materials; engineering (housing, boats, weapons, utensils) was dominated by polymers (wood, straw, skins), composites (like straw bricks) and ceramics (stone, flint, pottery and, later, glass). Around 1500 BC, the consumption of bronze might reflect the dominance in world power and, still later, iron. Steel gained its prominence around 1850, and metals have dominated engineering design ever since. However, in the past two decades, other classes of materials, including high strength polymers, ceramics, and structural composites, have been gaining increasing technological importance. The growth rate of carbon-fiber composites is at about 30% per year – the sort of growth rate enjoyed by steel at the peak of the Industrial Revolution. According to Ashby the new materials offer new and exciting possibilities for the designer and the potential for new products.
Fiber composite materials
Fiber composites are hybrid materials of which the composition and internal architecture are varied in a controlled manner in order to match their performance to the most demanding structural or non-structural roles.
- Type
- Chapter
- Information
- Microstructural Design of Fiber Composites , pp. 1 - 28Publisher: Cambridge University PressPrint publication year: 1992
- 4
- Cited by