from Part D - Hydrodynamics
Published online by Cambridge University Press: 05 November 2012
Historical review
1845
G. Stokes showed that the translational friction for a sphere is proportional to its radius, and to the viscosity of its surrounding solvent. In 1856 he demonstrated that for small angular velocity the rotation of the sphere may be characterised by a single parameter, which is proportional to the linear dimensions cubed.
1893
D. Edwardes calculated two frictional coefficients of the rotation for an ellipsoid of revolution: one for rotation around the axis of revolution and another for rotation around a direction normal to the first. In 1906 A. Einstein showed that rotation of the sphere in Stokes' approximation may be characterised by a single constant which has the dimensions of time. In 1928 R. Gans used the Edwardes frictional coefficients for an ellipsoid of revolution to calculate the ratios of the principal relaxation times to the relaxation time of a sphere of equal volume. In 1936 F. (Francis) Perrin presented equations that give the three rotational coefficients and three rotational relaxation times as functions of the dimensions of a three-axis ellipsoid. These equations could not be expressed in terms of elementary functions. In 1960 L. D. Favro showed that diffusion coefficients related to the rotational motion of a general particle involve five relaxation times; when two of the diffusion coefficients are equal the number of relaxation times is reduced to three. In 1977 E. Small and I. Isenberg solved Perrin's equations for the rotational diffusion of a general ellipsoid using a numerical integration procedure.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.