from Part D - Hydrodynamics
Published online by Cambridge University Press: 05 November 2012
Historical review
1913
A. Dumansky proposed the use of ultracentrifugation to determine the dimensions of colloidal particles.
1923
T. Svedberg and J. B. Nichols constructed the first centrifuge with an optical system to follow particle behaviour in a centrifugal field. One year later, Svedberg noted the decrease in absorbance at the top of the cell during centrifugation of a haemoglobin solution.
1926
Svedberg made the first measurements of protein molecular weights (haemoglobin and ovalbumin) by sedimentation equilibrium and in 1927 he determined the molecular weight of haemoglobin using a combination of sedimentation and diffusion data. These pioneering studies led to the undeniable conclusion that proteins are truly macromolecules, made up of a large number of atoms linked by covalent bonds (Comment D4.1).
(Comment D4.1)
It is interesting to note that Theodor Svedberg was awarded the Nobel prize for his work on colloidal systems and not for inventing the analytical centrifuge.
1929
O. Lamm deduced a general equation describing the behaviour of the moving boundary in the ultracentrifuge field. The exact solution of the equation is an infinite series of integrals, which can be computed only by numerical integration. In later work, the Lamm equation was solved analytically for specific limiting cases (H. Faxen, W. J. Archibald, H. Fujita).
1930s
Schlieren optical systems were designed by J. St. L. Philpot and H. Svenson, and independently by L. G. Longsworth; these allowed a representation of the concentration gradient (or, more precisely, the refractive index increment) as a function of distance in the centrifuge sample cell.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.