Published online by Cambridge University Press: 16 October 2009
We have only the deepest sympathy for those readers who have not encountered this type of simple yet mind-boggling argument before.
Marvin Minsky [Min67]The construction of an undecidable sentence of Z2 will be completed in this chapter. This construction involves
Enumerating Z2 proofs using a one-to-one mapping from Z2 proofs to the natural numbers.
Defining a Lisp predicate that searches for the first proof or disproof (i.e., proof of the negation) of the given formula in this enumeration of proofs, and returns T or F, accordingly. Let this “theorem checker” be of the form (Theorem X), where X is the given formula.
Using the representability of the above predicate to construct a sentence U which can be seen to assert, “(Theorem u) = F,” where u is the Lisp representation of U. It will be shown that if U is either provable or disprovable in Z2, then it is both provable and disprovable.
The Enumeration of Proofs
Proofs in Z2 are Lisp data structures constructed using Lisp constructors such as Cons, Add1, F-Not, F-Or, Forsome. If we can enumerate all such data structures, then we can also enumerate all Z2 proofs. This enumeration is achieved by mapping these data structures (z-expressions) to n-expressions and, in turn, mapping n-expressions to natural numbers. The mapping from z-expressions to n-expressions is performed by the function GCODE discussed in the previous chapter (page 99). The resulting n-expressions are enumerated by the function Numcode below. If X is a number, (Numcode X) returns the odd number 2X+1.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.