Published online by Cambridge University Press: 05 June 2016
Abstract. A central theme in current work in quantum information and quantum foundations is to see quantum mechanics as occupying one point in a space of possible theories, and to use this perspective to understand the special features and properties which single it out, and the possibilities for alternative theories. Two formalisms which have been used in this context are operational theories, and categorical quantum mechanics. The aim of the present paper is to establish strong connections between these two formalisms. We show how models of categorical quantum mechanics have representations as operational theories. We then show how non-locality can be formulated at this level of generality, and study a number of examples from this point of view, including Hilbert spaces, sets and relations, and stochastic maps. The local, quantum, and no-signalling models are characterized in these terms.
Introduction. A central theme in current work in quantum information and quantum foundations is to see quantum mechanics as occupying one point in a space of possible theories, and to use this perspective to understand the special features and properties which single it out, and the possibilities for alternative theories.
Two formalisms which have been used in this context are operational theories [48, 41, 52, 47], and categorical quantum mechanics [6, 7].
• Operational theories allow general formulations of results in quantum foundations and quantum information [11, 12, 10]. They also play a prominent rôle in current work on axiomatizations of quantum mechanics [36, 19, 49, 25].
• Categorical quantum mechanics enables a high-level approach to quantum information and quantum foundations, which can be presented in terms of string-diagram representations of structures in monoidal categories [7]. This has proved very effective in providing a conceptually illuminating and technically powerful perspective on a range of topics, including quantum protocols [6], entanglement [24], measurement-based quantum computing [29], no-cloning [1], and non-locality [22].
The aim of the present paper is to establish strong connections between these two formalisms. We shall begin by reviewing operational theories. We then show how a proper formulation of compound systems within the operational framework leads to a view of operational theories as representations of monoidal categories of a particular form. We call these operational representations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.