from Part Two - Doing Category Theory
Published online by Cambridge University Press: 13 October 2022
In this chapter we look at the concept of morphisms between categories, using the principle of preserving structure. We give the definition in two ways, one for each of our two approaches to defining categories (by homsets or by graphs). We look at functors between small examples of categories, including functors between posets, monoids, and groups, expressed as categories. We consider functors from small drawable categories and show that they produce a diagram of that shape in the target category. We think about the category consisting of a single non-trivial isomorphism, and see that a functor out of it picks out an isomorphism in the target category. We describe free and forgetful functors, including the free monoid functor. We define the concept of functors preserving and reflecting structure, and show that not all functors preserve epics, but they all preserve split epics. We consider whether the above forgetful functors preserve terminal and initial objects. Further topics include the fundamental group functor, and Van Kampen’s theorem reframed as preservation of pushouts under certain circumstances. We introduce contravariant functors.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.