Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T08:53:09.440Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 May 2020

Otso Ovaskainen
Affiliation:
University of Helsinki
Nerea Abrego
Affiliation:
University of Helsinki
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Joint Species Distribution Modelling
With Applications in R
, pp. 350 - 368
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarenkov, K., Somervuo, P., Nilsson, R. H., Kirk, P. M., Huotari, T., Abrego, N. & Ovaskainen, O. (2018). Protax-fungi: A web-based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. New Phytol., 220, 517525.CrossRefGoogle ScholarPubMed
Abrego, N., Christensen, M., Bässler, C., Ainsworth, A. M. & Heilmann-Clausen, J. (2017b). Understanding the distribution of wood-inhabiting fungi in European beech reserves from species-specific habitat models. Fungal Ecol., 27, 168174.Google Scholar
Abrego, N., Norberg, A. & Ovaskainen, O. (2017a). Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol., 105, 10701081.Google Scholar
Adams, R. P., Murray, I. & MacKay, D. J. C. (2009). Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. Proceedings of the 26th International Conference on Machine Learning, 9–16.CrossRefGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Contr., 19, 716723.Google Scholar
Algar, A. C., Kharouba, H. M., Young, E. R. & Kerr, J. T. (2009). Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 2233.Google Scholar
Amarasekare, P. & Nisbet, R. (2001). Spatial heterogeneity, source‐sink dynamics, and the local coexistence of competing species. Am. Nat., 158, 572584.Google Scholar
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol., 26, 3246.Google Scholar
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C. & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett., 14, 1928.Google Scholar
Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. Ann. Math. Statist., 22, 327351.Google Scholar
Araújo, M. B. & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. J. Biogeogr., 33, 16771688.Google Scholar
Araújo, M. B. & Luoto, M. (2007). The importance of biotic interactions for modelling species distributions under climate change. Global Ecol. Biogeogr., 16, 743753.Google Scholar
Araújo, M. B. & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 15271539.Google Scholar
Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B., Zimmermann, N. E. & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Sci. Adv., 5(1), eaat4858.Google Scholar
Arrhenius, O. (1921). Species and area. J. Ecol., 9, 9599.Google Scholar
Asher, J., Warren, M., Fox, R., Harding, P., Jeffcoate, G. & Jeffcoate, S. (2001). Millennium Atlas of Butterflies in Britain and Ireland. Oxford University Press.Google Scholar
Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H. L., Dunn, R. R. & Fierer, N. (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. USA, 112, 57565761.Google Scholar
Barry, S. C. & Welsh, A. H. (2002). Generalized additive modelling and zero inflated count data. Ecol. Model., 157, 179188.Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Soft., 67(1), 148.Google Scholar
Bauman, D., Drouet, T., Fortin, M. & Dray, S. (2018). Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology, 99, 21592166.Google Scholar
Beale, C. M., Lennon, J. J., Elston, D. A., Brewer, M. J. & Yearsley, J. M. (2007). Red herrings remain in geographical ecology: A reply to Hawkins et al. (2007). Ecography, 30, 845847.Google Scholar
Beaulieu, J. M., Jhwueng, D., Boettiger, C. & O’Meara, B. C. (2012). Modeling stabilizing selection: Expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution, 66, 23692383.Google Scholar
Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform., 19, 1015.Google Scholar
Beissinger, S. R., Iknayan, K. J., Guillera-Arroita, G., Zipkin, E. F., Dorazio, R. M., Royle, J. A. & Kéry, M. (2016). Incorporating imperfect detection into joint models of communities: A response to Warton et al. Methods Ecol. Evol., 31, 736737.Google Scholar
Bhattacharya, A. & Dunson, D. B. (2011). Sparse Bayesian infinite factor models. Biometrika, 98, 291306.Google Scholar
Blonder, B. (2018). Hypervolume concepts in niche- and trait-based ecology. Ecography, 41, 14411455.Google Scholar
Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, N. E., O’Connor, K. & Mace, G. M. (2010). Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS. Biol., 8, 111.Google Scholar
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W. & de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol., 29, 358367.Google Scholar
Bokma, F., Bokma, J. & Mönkkönen, M. (2001). Random processes and geographic species richness patterns: Why so few species in the North?. Ecography, 24, 4349.CrossRefGoogle Scholar
Bolker, B. M. (2008). Ecological Models and Data in R. Princeton University Press.Google Scholar
Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. (2014). Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity Distrib., 20, 19.Google Scholar
Borcard, D. & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153, 5168.Google Scholar
Borcard, D., Gillet, F. & Legendre, P. (2011). Numerical Ecology with R. Springer.Google Scholar
Boulangeat, I., Gravel, D. & Thuiller, W. (2012). Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol. Lett., 15, 584593.Google Scholar
Box, G. E. P. (1976). Science and statistics. J. Am. Stat. Assoc., 71, 791799.Google Scholar
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. Eds. Launer, Robert L. & Wilkinson, Graham N.. In: Robustness in Statistics, Academic Press, 201236.CrossRefGoogle Scholar
Bray, J. R. & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27, 325349.Google Scholar
Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol., 6, 12101218.CrossRefGoogle Scholar
Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G., Liancourt, P., Tielbörger, K., Travis, J. M. J., Anthelme, F., Armas, C., Coll, L., Corcket, E., Delzon, S., Forey, E., Kikvidze, Z., Olofsson, J., Pugnaire, F., Quiroz, C. L., Saccone, P., Schiffers, K., Seifan, M., Touzard, B. & Michalet, R. (2008). Facilitation in plant communities: The past, the present, and the future. J. Ecol., 96, 1834.Google Scholar
Brooks, S. P. & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat., 7, 434455.Google Scholar
Brotons, L., Herrando, S. & Pla, M. (2007). Updating bird species distribution at large spatial scales: Applications of habitat modelling to data from long-term monitoring programs. Divers. Distrib., 13, 276288.Google Scholar
Brown, A. M., Warton, D. I., Andrew, N. R., Binns, M., Cassis, G. & Gibb, H. (2014). The fourth-corner solution: Using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol., 5, 344352.Google Scholar
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends Ecol. Evol., 18, 119125.Google Scholar
Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W., Heidema, A. H., Nabuurs, G. J. & Gunia, K. (2012). Statistical mapping of tree species over Europe. Eur. J. Forest. Res., 131, 145157.Google Scholar
Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer.Google Scholar
Burns, A. R., Stephens, W. Z., Stagaman, K., Wong, S., Rawls, J. F., Guillemin, K. & Bohannan, B. J. M. (2015). Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J., 10, 655.Google Scholar
Bush, A., Sollmann, R., Wilting, A., Bohmann, K., Cole, B., Balzter, H., Martius, C., Zlinszky, A., Calvignac-Spencer, S., Cobbold, C. A., Dawson, T. P., Emerson, B. C., Ferrier, S., Gilbert, M. T., Herold, M., Jones, L., Leendertz, F. H., Matthews, L., Millington, J. D. A., Olson, J. R., Ovaskainen, O., Raffaelli, D., Reeve, R., Rödel, M., Rodgers, T. W., Snape, S., Visseren-Hamakers, I., Vogler, A. P., White, P. C. L., Wooster, M. J. & Yu, D. W. (2017). Connecting Earth observation to high-throughput biodiversity data. Nature Ecol. Evol., 1, 0176.Google Scholar
Cadotte, M. W., Arnillas, C. A., Livingstone, S. W. & Yasui, S. E. (2015). Predicting communities from functional traits. Trends Ecol. Evol., 30, 510511.Google Scholar
Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. (2014). Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecol. Biogr., 23, 99112.Google Scholar
Cale, W. G., Henebry, G. M. & Yeakley, J. A. (1989). Inferring process from pattern in natural communities. Bioscience, 39, 600605.Google Scholar
Carpenter, S. R. (1996). Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology, 77, 677680.Google Scholar
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. (2015). Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1(5), e1400253.Google Scholar
Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. (2014). NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw., 61(6), 136.Google Scholar
Chase, J. M. & Leibold, M. A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press.Google Scholar
Chase, J. M., McGill, B. J., Thompson, P. L., Antão, L. H., Bates, A. E., Blowes, S. A., Dornelas, M., Gonzalez, A., Magurran, A. E., Supp, S. R., Winter, M., Bjorkman, A. D., Bruelheide, H., Byrnes, J. E. K., Cabral, J. S., Elahi, R., Gomez, C., Guzman, H. M., Isbell, F., Myers-Smith, I., Jones, H. P., Hines, J., Vellend, M., Waldock, C. & O’Connor, M. (2019). Species richness change across spatial scales. Oikos, 128, 10791091.Google Scholar
Chave, J., Muller‐Landau, H. & Levin, S. (2002). Comparing classical community models: Theoretical consequences for patterns of diversity. Am. Nat., 159, 123.Google Scholar
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y. & Li, Y. (2018). Xgboost: Extreme gradient boosting. R package version 0.71.2.Google Scholar
Clark, J. S., Gelfand, A. E., Woodall, C. W. & Zhu, K. (2014). More than the sum of the parts: Forest climate response from joint species distribution models. Ecol. Appl., 24, 990999.Google Scholar
Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J. & Zhang, S. (2017). Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecol. Monogr., 87, 3456.Google Scholar
Clements, F. E. (1916). Plant Succession: Analysis of the Development of Vegetation. Publication no. 242 . Carnegie Institute of Washington.Google Scholar
Clements, F. E. (1936). Nature and structure of the climax. J. Ecol., 24, 252284.Google Scholar
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Steege, H., Morgan, H. D., Heijden, M. G. A., Pausas, J. G. & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335380.Google Scholar
Cramp, S., Simmons, K. E. L. & Perrins, C. M. (1977–1994). Handbook of the Birds of Europe, the Middle East, and North Africa: The Birds of the Western Palearctic. Oxford University Press.Google Scholar
Crookston, N. & Finley, A. (2008). yaImpute: An R package for kNN imputation. J. Stat. Softw., 23(10), 116.Google Scholar
D’Amen, M., Rahbek, C., Zimmermann, N. E. & Guisan, A. (2017). Spatial predictions at the community level: From current approaches to future frameworks. Biol. Rev., 92, 169187.Google Scholar
Damgaard, C. (2015). Modelling pin-point cover data of complementary vegetation classes. Ecol. Inform., 30, 179184.Google Scholar
Damgaard, C. (2008). Modelling pin-point plant cover data along an environmental gradient. Ecol. Model., 214, 404410.CrossRefGoogle Scholar
Damschen, E. I., Harrison, S. & Grace, J. B. (2010). Climate change effects on an endemic-rich edaphic flora: Resurveying Robert H. Whittaker’s Siskiyou sites (Oregon, USA). Ecology, 91, 36093619.Google Scholar
Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699700.Google Scholar
De’ath, G., Therneau, T. M., Atkinson, B., Ripley, B. & Oksanen, J. (2014). Mvpart: Multivariate partitioning. R package version 1.6-2.Google Scholar
Dengler, J. (2009). Which function describes the species–area relationship best? A review and empirical evaluation. J. Biogeogr., 36, 728744.Google Scholar
Diamond, J. M. (1975). Assembly of Species Communities. Eds. Cody, M. L., & Diamond, J. M.. In: Ecology and Evolution of Communities. Harvard University Press, 342444.Google Scholar
Dolédec, S., Chessel, D., ter Braak, C. J. F. & Champely, S. (1996). Matching species traits to environmental variables: A new three-table ordination method. Environ. Ecol. Stat., 3, 143166.Google Scholar
Dormann, C. F. (2007a). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol. Biogeogr., 16, 129138.Google Scholar
Dormann, C. F. (2007b). Promising the future? global change projections of species distributions. Basic Appl. Ecol., 8, 387397.Google Scholar
Dormann, C. F., Bobrowski, M., Dehling, D. M., Harris, D. J., Hartig, F., Lischke, H., Moretti, M. D., Pagel, J., Pinkert, S., Schleuning, M., Schmidt, S. I., Sheppard, C. S., Steinbauer, M. J., Zeuss, D. & Kraan, C. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecol. Biogeogr., 27, 10041016.Google Scholar
Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M. & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30, 609628.CrossRefGoogle Scholar
Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B. & Singer, A. (2012). Correlation and process in species distribution models: Bridging a dichotomy. J. Biogeogr., 39, 21192131.Google Scholar
Dray, S., Dufour, A. & Thioulouse, J. (2018). Ade4: Analysis of ecological data: Exploratory and Euclidean methods in environmental sciences.Google Scholar
Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N. & Wagner, H. H. (2019). Adespatial: Multivariate multiscale spatial analysis. R package version 0.3-7.Google Scholar
Dray, S. & Legendre, P. (2008). Testing the species traits–environment relationships: The fourth-corner problem revisited. Ecology, 89, 34003412.Google Scholar
Dray, S., Legendre, P. & Peres-Neto, P. R. (2006). Spatial modelling: A comprehensive framework for Principal Coordinate Analysis of Neighbour Matrices (PCNM). Ecol. Model., 196, 483493.Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol., 29, 19691973.Google Scholar
Duan, L. L., Johndrow, J. E. & Dunson, D. B. (2018). Scaling up data augmentation MCMC via calibration. J. Mach. Learn. Res., 19, 25752608.Google Scholar
Dunson, D. B. (2018). Statistics in the big data era: Failures of the machine. Stat. Probabil. Lett., 136, 49.Google Scholar
Dunstan, P. K., Foster, S. D. & Darnell, R. (2011). Model based grouping of species across environmental gradients. Ecol. Model., 222, 955963.Google Scholar
Durante, D., Scarpa, B. & Dunson, D. B. (2014). Locally adaptive factor processes for multivariate time series. J. Mach. Learn. Res., 15, 14931522.Google Scholar
Elith, J. & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annu .Rev. Ecol. Evol. Syst., 40, 677697.Google Scholar
Elton, C. (1966). The Patterns of Animal Communities. 1st edn. John Wiley & Sons, London; Methuen; New York.Google Scholar
Elton, C. (1927). Animal Ecology. University of Chicago Press.Google Scholar
European Environment Agency. (2016). Corine land cover (CLC) 2012, version 18.5.1. available at http://Land.copernicus.eu/pan-european/corine-land-cover/clc-2012/viewGoogle Scholar
Fauth, J. E., Bernardo, J., Camara, M., Resetarits, W. J., Van Buskirk, J. & McCollum, S. A. (1996). Simplifying the jargon of community ecology: A conceptual approach. Am. Nat., 147, 282286.Google Scholar
Ferrier, S. & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. J. Appl. Ecol., 43, 393404.Google Scholar
Fick, S. E. & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 43024315.Google Scholar
Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol., 12, 4258.Google Scholar
Fithian, W., Elith, J., Hastie, T. & Keith, D. A. (2015). Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol., 6, 424438.CrossRefGoogle ScholarPubMed
Foster, S. D., Givens, G. H., Dornan, G. J., Dunstan, P. K. & Darnell, R. (2013). Modelling biological regions from multi-species and environmental data. Environmetrics, 24, 489499.Google Scholar
Fox, E. B. & Dunson, D. B. (2015). Bayesian nonparametric covariance regression. J. Mach. Learn. Res., 16, 25012542.Google Scholar
Fox, G. A., Negrete-Yankelevich, S. & Sosa, V. J. (2015). Ecological Statistics: Contemporary Theory and Application. Oxford University Press.Google Scholar
Franklin, J. (2009). Mapping Species Distributions, Spatial Inference and Prediction. Cambridge University Press.Google Scholar
Garbelotto, M. & Gonthier, P. (2013). Biology, epidemiology, and control of Heterobasidion species worldwide. Annu. Rev. Phytopathol., 51, 3959.Google Scholar
Gause, G. F. (1934). The Struggle for Existence. Williams and Wilkins.Google Scholar
GBIF (2018) The Global Biodiversity Information Facility. Available at: www.gbif.org/what-is-gbifGoogle Scholar
Gelfand, A. E., Fuentes, M., Hoeting, J. A. & Smith, R. L. (2019). Handbook of Environmental and Ecological Statistics. Chapman & Hall/CRC Press.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013). Bayesian Data Analysis. 3rd edn. Chapman & Hall.Google Scholar
Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457472.Google Scholar
Geweke, J. (1996). Bayesian reduced rank regression in econometrics. J. Econom., 75, 121146.Google Scholar
Geweke, J. & Zhou, G. (1996). Measuring the price of the arbitrage pricing theory. Rev. Financ. Stud., 9, 557587.Google Scholar
Gleason, H. A. (1926). The individualistic concept of the plant association. J. Torrey Bot. Soc., 53, 726.Google Scholar
Gneiting, T. & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Am. Stat., 102, 359378.Google Scholar
Goldberg, D. E. (1990). Components of Resource Competition in Plant Communities. Eds. Grace, J. B. & Tilman, D.). In: Perspectives on Plant Competition ,Academic Press, 2749.Google Scholar
Golding, N. & Harris, D. J. (2015). BayesComm: Bayesian community ecology analysis. R package version 0.1-1.Google Scholar
Gonçalves, F. B. & Gamerman, D. (2018). Exact Bayesian inference in spatiotemporal cox processes driven by multivariate Gaussian processes. J. R. Stat. Soc. B, 80, 157175.Google Scholar
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 202, 1827.Google Scholar
Gotelli, N., Hart, E. & Ellison, A. (2015). EcoSimR: Null model analysis for ecological data. R package version 0.1.0.Google Scholar
Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology, 81, 26062621.Google Scholar
Gotelli, N. J., Anderson, M. J., Arita, H. T., Chao, A., Colwell, R. K., Connolly, S. R., Currie, D. J., Dunn, R. R., Graves, G. R., Green, J. L., Grytnes, J., Jiang, Y., Jetz, W., Kathleen Lyons, S., McCain, C. M., Magurran, A. E., Rahbek, C., Rangel, T. F. L. V. B., Soberón, J., Webb, C. O. & Willig, M. R. (2009). Patterns and causes of species richness: A general simulation model for macroecology. Ecol. Lett., 12, 873886.Google Scholar
Götzenberger, L., de Bello, F., Bråthen, K. A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K. & Zobel, M. (2012). Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev., 87, 111127.Google Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325338.Google Scholar
Grafen, A. & Hails, R. (2002). Modern Statistics for the Life Sciences. Oxford University Press.Google Scholar
Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. (2011). Ensemble modelling of species distribution: The effects of geographical and environmental ranges. Ecography, 34, 917.Google Scholar
Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344347.Google Scholar
Grinnell, J. (1917). The niche-relationships of the California thrasher. The Auk, 34, 427433.Google Scholar
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. (2011). Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol., 24, 699711.Google Scholar
Guillera-Arroita, G. (2017). Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography, 40: 281295.Google Scholar
Guisan, A., Edwards, T. C. & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model., 157, 89100.Google Scholar
Guisan, A. & Rahbek, C. (2011). SESAM – A new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr., 38, 14331444.Google Scholar
Guisan, A. & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecol. Lett., 8, 9931009.Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. (2017). Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press.Google Scholar
Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecol. Model., 135, 147186.Google Scholar
Hanski, I. (2016). Messages from Islands: A Global Biodiversity Tour. 1st edn. University of Chicago Press.Google Scholar
Harris, D. J. (2015). Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol., 6, 465473.Google Scholar
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. 1st edn. Oxford University Press.Google Scholar
Hassell, M. P. (1975). Density-dependence in single-species populations. J. Anim. Ecol., 44, 283295.Google Scholar
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., Porter, E. E. & Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 31053117.Google Scholar
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D. & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113.Google Scholar
He, Q., Bertness, M. D. & Altieri, A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett., 16, 695706.Google Scholar
Hebert, P. D., Alina, C., Ball, S. L. & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci., 270, 313321.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978.Google Scholar
Hijmans, R. J. & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol., 12, 22722281.Google Scholar
Hijmans, R. J., Phillips, S. J., Leathwick, J. R. & Elith, J. (2017). Dismo: Species distribution modeling. R package version 1.Google Scholar
Hill, N. A., Foster, S. D., Duhamel, G., Welsford, D., Koubbi, P. & Johnson, C. R. (2017). Model-based mapping of assemblages for ecology and conservation management: A case study of demersal fish on the Kerguelen plateau. Divers. Distrib., 23, 12161230.Google Scholar
Holmes, I., Harris, K. & Quince, C. (2012). Dirichlet multinomial mixtures: Generative models for microbial metagenomics. PLoS ONE, 7, 115.Google Scholar
Holyoak, M., Leibold, M. A. & Holt, R. D. (2005). Metacommunities: Spatial Dynamics and Ecological Communities. 1st edn. The University of Chicago Press.Google Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton Univ. Press.Google Scholar
Hui, F. K. C. (2017). Boral: Bayesian ordination and regression AnaLysis. R package version 1.4.Google Scholar
Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. & Warton, D. I. (2015). Model-based approaches to unconstrained ordination. Methods Ecol. Evol., 6, 399411.Google Scholar
Hui, F. K. C., Warton, D. I., Foster, S. D. & Dunstan, P. K. (2013). To mix or not to mix: Comparing the predictive performance of mixture models vs. separate species distribution models. Ecology, 94, 19131919.Google Scholar
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals. Am. Nat., 93, 145159.Google Scholar
iNaturalist. (2019) iNaturalist research-grade observations [WWW document]. www.inaturalist.org.Google Scholar
Ives, A. R. & Helmus, M. R. (2011). Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr., 81, 511525.Google Scholar
Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model. J. Multivariate Anal., 5, 248264.Google Scholar
Jarzyna, M. A. & Jetz, W. (2018). Taxonomic and functional diversity change is scale dependent. Nat. Commun., 9, 2565.Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444.Google Scholar
Johnson, J. B. & Omland, K. S. (2004). Model selection in ecology and evolution. Trends Ecol. Evol., 19, 101108.Google Scholar
Johnston, A., Ausden, M., Dodd, A. M., Bradbury, R. B., Chamberlain, D. E., Jiguet, F., Thomas, C. D., Cook, A. S. C. P., Newson, S. E., Ockendon, N., Rehfisch, M. M., Roos, S., Thaxter, C. B., Brown, A., Crick, H. Q. P., Douse, A., McCall, R. A., Pontier, H., Stroud, D. A., Cadiou, B., Crowe, O., Deceuninck, B., Hornman, M. & Pearce-Higgins, J. (2013). Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change, 3, 1055.Google Scholar
Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. Am. Nat., 129, 657677.Google Scholar
Jung, V., Violle, C., Mondy, C., Hoffmann, L. & Muller, S. (2010). Intraspecific variability and trait-based community assembly. J. Ecol., 98, 11341140.Google Scholar
Kassambara, A. & Mundt, F. (2019). Factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.6.Google Scholar
Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., van Bodegom, P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., Bradstock, R., Bunker, D. E., Casanoves, F., Cavender-Bares, J., Chambers, J. Q., Chapin Iii, F.S., Chave, J., Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A., Jansen, S., Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L., Lloyd, J., Llusià, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., Medlyn, B. E., Messier, J., Moles, A. T., Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, Ü, Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J., Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S., Pausas, J. G., Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret, B., Sardans, J., Shiodera, S., Shipley, B., Siefert, A., Sosinski, E., Soussana, J. -., Swaine, E., Swenson, N., Thompson, K., Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, S. J., Yguel, B., Zaehle, S., Zanne, A. E. & Wirth, C. (2011). TRY – a global database of plant traits. Global Change Biol., 17, 29052935.Google Scholar
Kearney, M. (2006). Habitat, environment and niche: What are we modelling?. Oikos, 115, 186191.Google Scholar
Keddy, P. A. (1992). Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci., 3, 157164.Google Scholar
Kessler, M. (2009). The impact of population processes on patterns of species richness: Lessons from elevational gradients. Basic Appl. Ecol., 10, 295299.Google Scholar
Kingsland, S. E. (1986). Modeling nature: Episodes in the history of population ecology. J. Hist. Biol., 19(2), 313314.Google Scholar
Kissling, W. D., Dormann, C. F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G. J., Montoya, J. M., Römermann, C., Schiffers, K., Schurr, F. M., Singer, A., Svenning, J., Zimmermann, N. E. & O’Hara, R. B. (2012). Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr., 39, 21632178.Google Scholar
Köppen, W. (1884). Die wärmezonen der erde, nach der dauer der heissen, gemässigten und kalten zeit und nach der wirkung der wärme auf die organische welt betrachtet [the thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world]. Meteorologische Zeitschrift (published 2011), 20(3), 351360.Google Scholar
Krebs, C. J. (1972). Ecology, the Experimental Analysis of Distribution and Abundance. Harper & Row.Google Scholar
Kukkala, A. S. & Moilanen, A. (2013). Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev., 88, 443464.Google Scholar
Ladle, R. J. & Whittaker, R. J. (2011). Conservation Biogeography. Wiley-Blackwell.Google Scholar
Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A. & Fulé, P. Z. (2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett., 15, 12911299.Google Scholar
Lavorel, S. & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. Funct. Ecol., 16, 545556.Google Scholar
Lawton, J. H. (1999). Are there general laws in ecology?. Oikos, 84, 177192.Google Scholar
le Roux, P. C., Pellissier, L., Wisz, M. S. & Luoto, M. (2014). Incorporating dominant species as proxies for biotic interactions strengthens plant community models. J. Ecol., 102, 767775.Google Scholar
Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74, 16591673.Google Scholar
Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr., 69, 124.Google Scholar
Legendre, P., Borcard, D. & Peres-Neto, P. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr., 75, 435450.Google Scholar
Legendre, P., Dale, M. R. T., Fortin, M., Gurevitch, J., Hohn, M. & Myers, D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography, 25, 601615.Google Scholar
Legendre, P., Galzin, R. & Harmelin-Vivien, M. (1997). Relating behavior to habitat: Solutions to the fourth-corner problem. Ecology, 78, 547562.Google Scholar
Legendre, P. & Legendre, L. (2012). Numerical Ecology. 3rd edn. Elsevier.Google Scholar
Lehtomäki, J. & Moilanen, A. (2013). Methods and workflow for spatial conservation prioritization using Zonation. Environ. Modell. Softw., 47, 128–37.Google Scholar
Leibold, M. A. (1995). The niche concept revisited: Mechanistic models and community context. Ecology, 76, 13711382.Google Scholar
Leibold, M. A. & Chase, J. M. (2018). Metacommunity Ecology. 1st edn. Princeton University Press.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett., 7, 601613.Google Scholar
Levine, S. H. (1976). Competitive interactions in ecosystems. Am. Nat., 110, 903910.Google Scholar
Liaw, A. & Wiener, M. (2002). Classification and regression by randomForest. R News, 2, 1822.Google Scholar
Lindström, Å, Green, M., Husby, M., Kålås, J. A. & Lehikoinen, A. (2015). Large-scale monitoring of waders on their boreal and arctic breeding grounds in northern Europe. Ardea, 103(1), 315.Google Scholar
Lomolino, M. V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. (2010). Biogeography. 4th edn. Sinauer Associates.Google Scholar
Lou, M. & Golding, G. B. (2012). The effect of sampling from subdivided populations on species identification with DNA barcodes using a Bayesian statistical approach. Mol. Phylogenet. Evol., 65(2), 765773.Google Scholar
MacArthur, R. H. (1972). Geographical Ecology: Patterns in the Distribution of Species. Princeton University Press.Google Scholar
MacArthur, R. H. & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. Am. Nat., 101, 377385.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton University Press.Google Scholar
Madon, B., Warton, D. I. & Araújo, M. B. (2013). Community-level vs species-specific approaches to model selection. Ecography, 36, 12911298.Google Scholar
Magurran, A. E. (2004). Measuring Biological Diversity. 1st edn. Wiley-Blackwell.Google Scholar
Magurran, A. E. & Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714.Google Scholar
Margules, C. & Sarkar, S. (2007). Systematic Conservation Planning. Cambridge University Press.Google Scholar
Margules, C. R. & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243253.Google Scholar
Marincowitz, S., Crous, P. W., Groenewald, J. Z. & Wingfield, M. J. (2008). Microfungi occurring on proteaceae in the fynbos. CBS Fungal Biodiversity Centre.Google Scholar
May, R. M. (1971). Stability in multispecies community models. Math. Biosci., 12, 5979.Google Scholar
McArdle, B. H. & Anderson, M. J. (2001). Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology, 82, 290297.Google Scholar
McCune, J. L. (2016). Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol., 53, 18711879.Google Scholar
McGill, B. J. (2003). A test of the unified neutral theory of biodiversity. Nature, 422, 881.Google Scholar
McGill, B. J. (2010). Towards a unification of unified theories of biodiversity. Ecol. Lett., 13, 627642.Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. (2006b). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178185.Google Scholar
McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I. & White, E. P. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10, 9951015.Google Scholar
McGill, B. J., Maurer, B. A. & Weiser, M. D. (2006a). Empirical evaluation of neutral theory. Ecology, 87, 14111423.Google Scholar
Meier, E. S., Edwards, T. C. Jr, Kienast, F., Dobbertin, M. & Zimmermann, N. E. (2011). Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. J. Biogeogr., 38, 371382.Google Scholar
Merow, C., Smith, M. J., Edwards, T. C. Jr, Guisan, A., McMahon, S. M., Normand, S., Thuiller, W., Wüest, R. O., Zimmermann, N. E. & Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models?. Ecography, 37, 12671281.Google Scholar
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. (2017). e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071). R package version 1.6-8.Google Scholar
Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C. & Powrie, L. W. (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecol. Biogeogr., 11, 445451.Google Scholar
Milborrow, S. (2017). Earth: Multivariate adaptive regression splines. R package version 4.5.1.Google Scholar
Miller, J., Damschen, E. & Ives, A. (2018). Data from: Functional traits and community composition: A comparison among community-weighted means, weighted correlations, and multilevel models. Dryad Digital Repository, doi:10.5061/dryad.7gj0s3b.Google Scholar
Miller, J. E. D., Damschen, E. I. & Ives, A. R. (2019). Functional traits and community composition: A comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol., 10, 415425.Google Scholar
Mitchell, T. J. & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. J. Am. Stat. Assoc., 83, 10231032.Google Scholar
Mod, H. K., le Roux, P. C. & Luoto, M. (2014). Outcomes of biotic interactions are dependent on multiple environmental variables. J. Veg. Sci., 25, 10241032.Google Scholar
Mod, H. K., le Roux, P. C., Guisan, A. & Luoto, M. (2015). Biotic interactions boost spatial models of species richness. Ecography, 38, 913921.Google Scholar
Moilanen, A. (2007). Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol. Conserv., 134, 571579.Google Scholar
Møller, J., Syversveen, A. R. & Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scand. J. Stat., 25, 451482.Google Scholar
Mönkkönen, M. & Forsman, J. T. (2002). Heterospecific attraction among forest birds: A review. Ornithol. Sci., 1, 4151.Google Scholar
Morin, P. J. (2011). Community Ecology, 2nd Edition. John Wiley & Sons,Ltd.Google Scholar
Morin, X., Viner, D. & Chuine, I. (2008). Tree species range shifts at a continental scale: New predictive insights from a process-based model. J. Ecol., 96, 784794.Google Scholar
Nascimento, F. F., Reis, M. D. & Yang, Z. (2017). A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol., 1, 14461454.Google Scholar
Nix, H. A. (1986). A Biogeographic Analysis of Australian Elapid Snakes. Ed. Longmore, R. In: Australian Flora and Fauna Series 7 . Bureau of Flora and Fauna, 415.Google Scholar
Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araújo, M. B., Dallas, T., Dunson, D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., O’Hara, B., Hill, N. A., Holt, R. D., Hui, F. K. C., Husby, M., Kålås, J. A., Lehikoinen, A., Luoto, M., Mod, H. K., Newell, G., Renner, I., Roslin, T., Soininen, J., Thuiller, W., Vanhatalo, J., Warton, D., White, M., Zimmermann, N. E., Gravel, D. & Ovaskainen, O. (2019). A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr., 89(3):e01370.Google Scholar
O’Hara, R. B. & Sillanpӓӓ, M. J. (2009). A review of Bayesian variable selection methods: What, how and which. Bayesian Anal., 4, 85117.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H. & Wagner, H. (2019). Vegan: Community ecology package. R package version 2.5-5.Google Scholar
Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. (2016a). Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods Ecol. Evol., 7, 549555.Google Scholar
Ovaskainen, O., Finkelshtein, D., Kutoviy, O., Cornell, S., Bolker, B. & Kondratiev, Y. (2014). A general mathematical framework for the analysis of spatiotemporal point processes. Theor. Ecol., 7, 101113.Google Scholar
Ovaskainen, O., Hottola, J. & Siitonen, J. (2010). Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 9, 25142521.Google Scholar
Ovaskainen, O., Roy, D. B., Fox, R. & Anderson, B. J. (2016b). Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol. Evol., 7, 428436.Google Scholar
Ovaskainen, O., Rybicki, J. & Abrego, N. (2019). What can observational data reveal about metacommunity processes? Ecography, 42, 18771886.Google Scholar
Ovaskainen, O., Schigel, D., Ali-Kovero, H., Auvinen, P., Paulin, L., Norden, B. & Norden, J. (2013). Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J., 7, 16961709.Google Scholar
Ovaskainen, O. & Soininen, J. (2011). Making more out of sparse data: Hierarchical modeling of species communities. Ecology, 92, 289295.Google Scholar
Ovaskainen, O., Tikhonov, G., Dunson, D., Grøtan, V., Engen, S., Sæther, B. & Abrego, N. (2017a). How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proc. R. Soc. Lond. Ser. B Biol. Sci., 284.Google Scholar
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. & Abrego, N. (2017b). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett., 20, 561576.Google Scholar
Pacifici, K., Reich, B. J., Miller, D. A. W., Gardner, B., Stauffer, G., Singh, S., McKerrow, A. & Collazo, J. A. (2017). Integrating multiple data sources in species distribution modeling: A framework for data fusion*. Ecology, 98, 840850.Google Scholar
Pearce, J. & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133, 225245.Google Scholar
Pearman, P. B., Randin, C. F., Broennimann, O., Vittoz, P., Knaap, W. O. v. d., Engler, R., Lay, G. L., Zimmermann, N. E. & Guisan, A. (2008). Prediction of plant species distributions across six millennia. Ecol. Lett., 11, 357369.Google Scholar
Pearson, R. G. & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecol. Biogeogr., 12, 361371.Google Scholar
Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T. P. & Lees, D. C. (2006). Model-based uncertainty in species range prediction. J. Biogeogr., 33, 17041711.Google Scholar
Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M., Maglianesi, M. A., Melián, C. J., Pitteloud, C., Roslin, T., Rohr, R., Saavedra, S., Thuiller, W., Woodward, G., Zimmermann, N. E. & Gravel, D. (2018). Comparing species interaction networks along environmental gradients. Biol. Rev., 93, 785800.Google Scholar
Pellissier, L., Anne Bråthen, K., Pottier, J., Randin, C. F., Vittoz, P., Dubuis, A., Yoccoz, N. G., Alm, T., Zimmermann, N. E. & Guisan, A. (2010). Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33, 10041014.CrossRefGoogle Scholar
Peres-Neto, P. R., Olden, J. D. & Jackson, D. A. (2001). Environmentally constrained null models: Site suitability as occupancy criterion. Oikos, 93, 110120.Google Scholar
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M. & Araújo, M. B. (2011). Ecological Niches and Geographic Distributions. 1st edn. Princeton University Press.Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model., 190, 231259.Google Scholar
Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R. & Magnusson, A. (2018). Coda: Output Analysis and Diagnostics for MCMC, R Package Version 0.19-2.Google Scholar
Pocheville, A. (2015). Chapter 26. The Ecological Niche: History and Recent Controversies. Eds. Heams, T., Huneman, P. Lecointre, G. & Silberstein, M. In: Handbook of Evolutionary Thinking in the Sciences. Springer, 547586.Google Scholar
Pollock, L. J., Morris, W. K. & Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. Ecography, 35, 716725.Google Scholar
Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O’Hara, R. B., Parris, K. M., Vesk, P. A. & McCarthy, M. A. (2014). Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Methods Ecol. Evol., 5, 397406.Google Scholar
Poorter, L. & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 17331743.Google Scholar
Preston, F. W. (1948). The commonness, and rarity, of species. Ecology, 29, 254283.Google Scholar
Preston, F. W. (1960). Time and space and the variation of species. Ecology, 41, 612627.Google Scholar
R Development Core Team. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.Google Scholar
Randin, C. F., Dirnböck, T., Dullinger, S., Zimmermann, N. E., Zappa, M. & Guisan, A. (2006). Are niche-based species distribution models transferable in space?. J. Biogeogr., 33, 16891703.Google Scholar
Rangel, T.F., Diniz-Filho, J. & Colwell, R. (2007). Species richness and evolutionary niche dynamics: A spatial pattern oriented simulation experiment. Am. Nat., 170, 602616.Google Scholar
Renner, I. W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S. J., Popovic, G. & Warton, D. I. (2015). Point process models for presence-only analysis. Methods Ecol. Evol., 6, 366379.Google Scholar
Renner, I. W. & Warton, D. I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274281.Google Scholar
Ricklefs, R. E. (1987). Community diversity: Relative roles of local and regional processes. Science, 235, 167171.Google Scholar
Ricklefs, R. E. (1990). Ecology. 3rd edn. W. H. Freeman and Co.Google Scholar
Ricklefs, R. E. (2008). Disintegration of the ecological community. Am. Nat., 172, 741750.Google Scholar
Ridgeway, G. (2017). Gbm: Generalized boosted regression models. R package version 2.1.3.Google Scholar
Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Monogr., 37, 317350.Google Scholar
Saint-Germain, M., Buddle, C. M., Larrivée, M., Mercado, A., Motchula, T., Reichert, E., Sackett, T. E., Sylvain, Z. & Webb, A. (2007). Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? J. Appl. Ecol., 44, 330339.Google Scholar
Saurola, P., Valkama, J. & Velmala, J. (2013). The Finnish bird ringing atlas. Vol 1.Google Scholar
Schindler, D. W. (1998). Whole-ecosystem experiments: Replication versus realism: The need for ecosystem-scale experiments. Ecosystems, 1, 323334.Google Scholar
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W. & Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. USA, 109, 62416246.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat, 6, 461464.Google Scholar
Sebastián-González, E., Sánchez-Zapata, J. A., Botella, F. & Ovaskainen, O. (2010). Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. Proc. R. Soc. Lond. B Biol. Sci., 277, 29832990.Google Scholar
Segurado, P., Araújo, M. B. & Kunin, W. E. (2006). Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol., 43, 433444.Google Scholar
Simberloff, D. S. & Wilson, E. O. (1969). Experimental zoogeography of islands: The colonization of empty islands. Ecology, 50, 278296.Google Scholar
Smith, T. W. & Lundholm, J. T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648655.Google Scholar
Somervuo, P., Yu, D. W., Xu, C. C. Y., Ji, Y., Hultman, J., Wirta, H. & Ovaskainen, O. (2017). Quantifying uncertainty of taxonomic placement in DNA barcoding and metabarcoding. Methods Ecol. Evol., 8, 398407.Google Scholar
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van, D. L. (2002). Bayesian measures of model complexity and fit. J. R. Statist. Soc. B, 64, 583639.Google Scholar
Stroud, J. T., Bush, M. R., Ladd, M. C., Nowicki, R. J., Shantz, A. A. & Sweatman, J. (2015). Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol., 5, 47574765.Google Scholar
Talluto, M. V., Boulangeat, I., Ameztegui, A., Aubin, I., Berteaux, D., Butler, A., Doyon, F., Drever, C. R., Fortin, M., Franceschini, T., Liénard, J., McKenney, D., Solarik, K. A., Strigul, N., Thuiller, W. & Gravel, D. (2016). Cross-scale integration of knowledge for predicting species ranges: A metamodeling framework. Glob. Ecol. Biogeogr., 25, 238249.Google Scholar
ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 11671179.Google Scholar
Thorson, J. T., Ianelli, J. N., Larsen, E. A., Ries, L., Scheuerell, M. D., Szuwalski, C. & Zipkin, E. F. (2016). Joint dynamic species distribution models: A tool for community ordination and spatio-temporal monitoring. Global Ecol.Biogeogr., 25, 11441158.Google Scholar
Thorson, J. T., Scheuerell, M. D., Shelton, A. O., See, K. E., Skaug, H. J. & Kristensen, K. (2015). Spatial factor analysis: A new tool for estimating joint species distributions and correlations in species range. Methods Ecol. Evol., 6, 627637.Google Scholar
Thuiller, W., Brotons, L., Araújo, M. B. & Lavorel, S. (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27, 165172.Google Scholar
Thuiller, W., Münkemüller, T., Lavergne, S., Mouillot, D., Mouquet, N., Schiffers, K. & Gravel, D. (2013). A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett., 16, 94105.Google Scholar
Tikhonov, G., Abrego, N., Dunson, D. & Ovaskainen, O. (2017). Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods Ecol. Evol., 8, 443452.Google Scholar
Tikhonov, G., Duan, L., Abrego, N., Newell, G., White, M., Dunson, D. & Ovaskainen, O. (2020a). Computationally efficient joint species distribution modeling of big spatial data. Ecology, e02929.Google Scholar
Tikhonov, G., Opedal, Ø, Abrego, N., Lehikoinen, A., de Jonge, M. M., Oksanen, J. & Ovaskainen, O. (2020b). Joint species distribution modelling with the R-package Hmsc. Methods Ecol. Evol., 11, 442–447.Google Scholar
Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 216.Google Scholar
Tjur, T. (2009). Coefficients of determination in logistic regression models – A new proposal: The coefficient of discrimination. Am. Stat., 63, 366372.Google Scholar
Tobler, M. W., Kéry, M., Hui, F. K. C., Guillera-Arroita, G., Knaus, P. & Sattler, T. (2019). Joint species distribution models with species correlations and imperfect detection. Ecology, 100, e02754.Google Scholar
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. (2017). Taxonomic bias in biodiversity data and societal preferences. Sci. Rep., 7, 9132.Google Scholar
Tuomisto, H. (2010). A diversity of beta diversities: Straightening up a concept gone awry. part 1. defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 222.Google Scholar
Valkama, J., Saurola, P., Lehikoinen, A., Lehikoinen, E., Piha, M., Sola, P. & Velmala, W. (2014). The Finnish bird ringing atlas. Vol 2.Google Scholar
Vellend, M. (2016). The Theory of Ecological Communities. 1st edn. Princeton University Press.Google Scholar
Vellend, M. (2010). Conceptual synthesis in community ecology. Q. Rev. Biol., 85, 183206.Google Scholar
Wallace, A. R. (1876). The Geographical Distribution of Animals, with a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth’s Surface. Macmillan and Co.Google Scholar
Warton, D. I., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., Taskinen, S., Walker, S. C. & Hui, F. K. C. (2015). So many variables: Joint modeling in community ecology. Trends Ecol. Evol., 30, 766779.Google Scholar
Watanabe, S. (2013). A widely applicable Bayesian information criterion. J. Mach. Learn. Res., 14, 867897.Google Scholar
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res., 11, 35713594.Google Scholar
Wei, T., Simko, V., Levy, L., Xie, Y., Jin, Y. & Zemla, J. (2017). Package ‘corrplot’: Visualization of a Correlation Matrix. R package version 0.84.Google Scholar
Whitfeld, T. J. S., Kress, W. J., Erickson, D. L. & Weiblen, G. D. (2012). Change in community phylogenetic structure during tropical forest succession: Evidence from New Guinea. Ecography, 35, 821830.Google Scholar
Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr., 30, 279338.Google Scholar
Whittaker, R. H. (1962). Classification of natural communities. Bot.Rev., 28, 1239.Google Scholar
Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213251.Google Scholar
Whittaker, R. H. (1975). Communities and Ecosystems. Macmillan, New York.Google Scholar
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M. & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett., 13, 13101324.Google Scholar
Wilman, H., Belmaker, J., Simpson, J., d. l. Rosa, C., Rivadeneira, M. M. & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology, 95, 20272027.Google Scholar
Wilson, K. A., Underwood, E. C., Morrison, S. A., Klausmeyer, K. R., Murdoch, W. W., Reyers, B., Wardell-Johnson, G., Marquet, P. A., Rundel, P. W., McBride, M. F., Pressey, R. L., Bode, M., Hoekstra, J. M., Andelman, S., Looker, M., Rondinini, C., Kareiva, P., Shaw, M. R. & Possingham, H. P. (2007). Conserving biodiversity efficiently: What to do, where, and when. PLoS Biol., 5, 112.Google Scholar
Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., Dormann, C. F., Forchhammer, M. C., Grytnes, J., Guisan, A., Heikkinen, R. K., Høye, T. T., Kühn, I., Luoto, M., Maiorano, L., Nilsson, M., Normand, S., Öckinger, E., Schmidt, N. M., Termansen, M., Timmermann, A., Wardle, D. A., Aastrup, P. & Svenning, J. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biol. Rev., 88, 1530.Google Scholar
Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Statist. Soc. B, 73, 336.Google Scholar
Wootton, J. T. (2005). Field parameterization and experimental test of the Neutral Theory of Biodiversity. Nature, 433, 309.Google Scholar
Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., Fielding, A. H., Bamford, A. J., Ban, S., Barbosa, A. M., Dormann, C. F., Elith, J., Embling, C. B., Ervin, G. N., Fisher, R., Gould, S., Graf, R. F., Gregr, E. J., Halpin, P. N., Heikkinen, R. K., Heinänen, S., Jones, A. R., Krishnakumar, P. K., Lauria, V., Lozano-Montes, H., Mannocci, L., Mellin, C., Mesgaran, M. B., Moreno-Amat, E., Mormede, S., Novaczek, E., Oppel, S., Ortuño Crespo, G., Peterson, A. T., Rapacciuolo, G., Roberts, J. J., Ross, R. E., Scales, K. L., Schoeman, D., Snelgrove, P., Sundblad, G., Thuiller, W., Torres, L. G., Verbruggen, H., Wang, L., Wenger, S., Whittingham, M. J., Zharikov, Y., Zurell, D. & Sequeira, A. M. M. (2018). Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol., 33, 790802.Google Scholar
Zhang, X. & Vincent, A. C. J. (2018). Predicting distributions, habitat preferences and associated conservation implications for a genus of rare fishes, seahorses (Hippocampus spp.). Divers. Distrib., 24, 10051017.Google Scholar
Zimmermann, N. E., Edwards, T. C. Jr, Graham, C. H., Pearman, P. B. & Svenning, J. (2010). New trends in species distribution modelling. Ecography, 33, 985989.Google Scholar
Zobel, M. (1997). The relative of species pools in determining plant species richness: An alternative explanation of species coexistence?. Trends Ecol. Evol., 12, 266269.Google Scholar
Zurell, D., Berger, U., Cabral, J. S., Jeltsch, F., Meynard, C. N., Münkemüller, T., Nehrbass, N., Pagel, J., Reineking, B., Schröder, B. & Grimm, V. (2010). The virtual ecologist approach: Simulating data and observers. Oikos, 119, 622635.Google Scholar
Zurell, D., Pollock, L. J. & Thuiller, W. (2018). Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments?. Ecography, 41, 18121819.Google Scholar
Zurell, D., Thuiller, W., Pagel, J., Cabral, J. S., Münkemüller, T., Gravel, D., Dullinger, S., Normand, S., Schiffers, K. H., Moore, K. A. & Zimmermann, N. E. (2016). Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol., 22, 26512664.Google Scholar
Zuur, A. F., Hilbe, J. M. & Ieno, E. N. (2013). Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. Highland Statistics Ltd.Google Scholar
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer.Google Scholar
Zuur, A. F., Saveliev, A. A. & Ieno, E. N. (2012). Zero Inflated Models and Generalized Linear Mixed Models with R. Highland Statistics Ltd.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Otso Ovaskainen, University of Helsinki, Nerea Abrego, University of Helsinki
  • Book: Joint Species Distribution Modelling
  • Online publication: 18 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108591720.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Otso Ovaskainen, University of Helsinki, Nerea Abrego, University of Helsinki
  • Book: Joint Species Distribution Modelling
  • Online publication: 18 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108591720.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Otso Ovaskainen, University of Helsinki, Nerea Abrego, University of Helsinki
  • Book: Joint Species Distribution Modelling
  • Online publication: 18 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108591720.018
Available formats
×