In Chapter 8, we discussed situations where the direction of the vector L remained constant, and only its magnitude changed. In this chapter, we will look at more general situations where the direction of L is allowed to change. The vector nature of L will prove to be vital here, and we will arrive at all sorts of strange results for spinning tops and such things. This chapter is rather long, alas, but the general outline is that the first three sections cover general theory, then Section 9.4 introduces some actual physical setups, and then Section 9.6 begins the discussion of tops.
Preliminaries concerning rotations
The form of general motion
Before getting started, we should make sure we're all on the same page concerning a few important things about rotations. Because rotations generally involve three dimensions, they can often be hard to visualize. A rough drawing on a piece of paper might not do the trick. For this reason, this chapter is one of the more difficult ones in this book. But to ease into it, the next few pages consist of some definitions and helpful theorems. This first theorem describes the general form of any motion. You might consider it obvious, but it's a little tricky to prove.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.