Book contents
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Turbulence in the Ionized Gas in Spiral Galaxies
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Summary
In this review I discuss recent results on the properties of diffuse ionized gas in spiral galaxies. This gas, also referred to as the warm ionized medium, contains most of the mass of the ionized interstellar medium, and fills a much larger fraction of the disk volume (about 20%) than HII regions. It is a major component of the interstellar medium in disk galaxies, and is particularly relevant because of the large amount of energy that is required to keep the medium ionized. I discuss the spatial distribution and morphology of the diffuse ionized medium in disk galaxies, both from an edge-on and face-on perspective, and the kinematic properties, which are linked to the energy input and turbulent support for this gas. The turbulent properties of HII regions are discussed elsewhere in this volume.
One of the important results is that diffuse ionized gas is present in all spiral galaxies, and contributes, to first order, the same fraction of the total Hα luminosity in a galaxy, independent of the Hubble type or star formation rate. A second important result is that this fraction is so high that Lyman continuum photons from OB stars appear to be the only viable source of ionization for the bulk of this medium. Measurements of forbidden line ratios generally agree reasonably well with photo ionization models, but not in all circumstances. Another potential problem with the photo ionization model is the ionization state of helium.
- Type
- Chapter
- Information
- Interstellar Turbulence , pp. 20 - 26Publisher: Cambridge University PressPrint publication year: 1999
- 1
- Cited by