Book contents
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
22 - Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
Published online by Cambridge University Press: 07 May 2010
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
Summary
In the preceding chapter we calculated the force generated by intermittent cavitation on simple forms. It was necessary to model not only the ship as a simple form but also the cavitating propeller. Although these simplifications gave useful information it was also obvious that the results could not be used for practical purposes. This was the price we had to pay for being able to obtain results by “hand-turned mathematics”.
When we now wish to obtain results for actual, intermittently cavitating propellers behind real ship forms of given (arbitrary) shape we must expect the mathematics to be too complicated to be manipulated into closed expressions for forces and pressures. Instead, we shall describe a general, computer-effected method for solving the problem for a propeller behind a ship and we shall also present results of this theory for cavitating propellers. Furthermore, we shall correlate these results with those obtained by model experiments.
REPRESENTATION OF HULLS OF ARBITRARY SHAPE IN THE PRESENCE OF A PROPELLER AND WATER SURFACE
It has been demonstrated in the foregoing that a propeller operating in a temporally uniform but spatially varying hull wake produces, through the concerted action of all the blades, a potential flow and pressure field composed of many components, all of which are at frequencies qZω. As these frequencies are large compared with those which can give rise to wave generation on the free water surface, the appropriate linearized boundary condition, imposed by the presence of the water surface, is that the total velocity potential in the undisturbed locus of that surface must be zero.
- Type
- Chapter
- Information
- Hydrodynamics of Ship Propellers , pp. 425 - 453Publisher: Cambridge University PressPrint publication year: 1993