Book contents
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
1 - Brief review of basic hydrodynamic theory
Published online by Cambridge University Press: 07 May 2010
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
Summary
An extensive, highly mathematical literature exists dealing with fluidmechanical aspects of ship propellers.
Invariably, the mathematical developments are only outlined, impeding easy comprehension even by knowledgeable readers. Our aim is to elucidate the mathematical theory in much greater detail than is generally available in extant papers. In this context, the first three chapters are provided as aids for those who have not had extensive practice in the application of classical hydrodynamical theory to flows induced in fluids by the motions of bodies. The fluid of interest is water which is taken to be incompressible and inviscid. Modifications arising from viscosity are described in a later chapter (Chapter 7) through reference to experimental observations.
This review begins with the derivation of the concept of continuity or conservation of mass at all points in sourceless flow and proceeds to the development of the Euler equations of motion. In the restricted but important class of irrotational motions (zero vorticity) Laplace's equation for the velocity potential is obtained. The remainder of this chapter is devoted to derivations of fundamental solutions of Laplace's equation in two and three dimensions.
It is emphasized that these first two chapters are necessarily limited in scope, being directed to our needs in subsequent chapters. There are many excellent books which should be consulted for those seeking greater depth and broader description of hydrodynamic theory. Among these we suggest Batchelor (1967), Lamb (1963), Lighthill (1986), Milne-Thomson (1955), and Yih (1988), and Newman (1977) for modern applications.
- Type
- Chapter
- Information
- Hydrodynamics of Ship Propellers , pp. 1 - 25Publisher: Cambridge University PressPrint publication year: 1993