Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Part 1 Fundamentals
- 1 A first glimpse of Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instabilities
- 2 The linear stage for a singlemode
- 3 The nonlinear stage for a singlemode
- 4 Multimode instabilities: Linear and nonlinear regimes
- 5 Global features from the lens of integrated mixingmeasurements
- 6 Internal dynamics from the lens of statistical mixingmeasurements
- 7 Elementary aspects of turbulent flows
- 8 Transition to turbulence
- Part 2 Hydrodynamics of Complex Flows
- Part 3 From the Microscopic to Cosmic Scales
- References
- Index
8 - Transition to turbulence
from Part 1 - Fundamentals
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Part 1 Fundamentals
- 1 A first glimpse of Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instabilities
- 2 The linear stage for a singlemode
- 3 The nonlinear stage for a singlemode
- 4 Multimode instabilities: Linear and nonlinear regimes
- 5 Global features from the lens of integrated mixingmeasurements
- 6 Internal dynamics from the lens of statistical mixingmeasurements
- 7 Elementary aspects of turbulent flows
- 8 Transition to turbulence
- Part 2 Hydrodynamics of Complex Flows
- Part 3 From the Microscopic to Cosmic Scales
- References
- Index
Summary
It is critical to evaluate whether the flow has transitioned into turbulence because most of the impact of large-scale mixing occurs when the flow becomes fully developed turbulence. Hydrodynamic instability flows are even more complex because of their time-dependent nature; therefore, both spatial and temporal criteria will be introduced in great detail to demonstrate the necessary and sufficient conditions for the flow to transition to turbulence. These criteria will be extremely helpful for designing experiments and numeric simulations with the goal to study large-scale turbulence mixing. One spatial criterion is that the Reynolds number must achieve a critical minimum value of 160,000. In addition, the temporal criteria suggest that flows need to be given approximately four eddy-turnover-times. This chapter will expand on these issues.
- Type
- Chapter
- Information
- Hydrodynamic Instabilities and TurbulenceRayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing, pp. 149 - 158Publisher: Cambridge University PressPrint publication year: 2024