from Part II - Gauge/Gravity Duality
Published online by Cambridge University Press: 05 May 2015
In the preceding chapters we have studied examples of very non-trivial tests of the AdS/CFT correspondence. At the same time we have seen that the AdS/CFT correspondence is a new useful approach for studying strongly coupled field theories by mapping them to a weakly coupled gravity theory. This raises the question whether a similar procedure may be used to study less symmetric strongly coupled field theories, thus generalising the AdS/CFT correspondence to gauge/gravity duality. The prototype example where such a procedure is desirable is Quantum Chromodynamics (QCD), the theory of quarks and gluons, which is strongly coupled at low energies. Although a holographic description of QCD itself is not yet available, decisive progress has been achieved in many respects. We will discuss the achievements and open questions in this direction in chapter 13. Here we begin the discussion of generalisations of the AdS/CFT correspondence in a more modest, though well-controlled and simpler, way by considering the gravity duals of N = 4 Super Yang–Mills theory deformed by relevant and marginal operators. These deformations break part of supersymmetry, and relevant operators also break conformal symmetry.
Renormalisation group flows in quantum field theory
Perturbing UV fixed points
The term interpolating flows refers to renormalisation group flows which connect an unstable UV fixed point to an IR fixed point at which the field theory is conformal again. A flow of this type is obtained for instance by perturbing the theory at a UV fixed point by a relevant or marginal operator. Marginal operators typically lead to a line of fixed points, while relevant operators generate a genuine RG flow, which may end at an IR fixed point. A further issuse is whether the theory flows to a confining theory in the IR, as we will discuss in more detail in chapter 13. A field theory example of an interpolating flow will be given in section 9.1.3 below.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.