Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:09:19.228Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 June 2020

Andrzej J. Buras
Affiliation:
Technische Universität München
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Glashow, S. L., Partial symmetries of weak interactions, Nucl. Phys. 22 (1961) 579588.Google Scholar
[2] Salam, A., Weak and electromagnetic interactions, Conf. Proc. C680519 (1968) 367–377.Google Scholar
[3] Weinberg, S., A model of leptons, Phys. Rev. Lett. 19 (1967) 12641266.Google Scholar
[4] Hooft, G.’t, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135157.Google Scholar
[5] Gaillard, M. and Lee, B. W., Rare decay modes of the K-mesons in gauge theories, Phys. Rev. D10 (1974) 897.Google Scholar
[6] Glashow, S. L., Iliopoulos, J., and Maiani, L., Weak interactions with Lepton-Hadron symmetry, Phys. Rev. D2 (1970) 12851292.Google Scholar
[7] Branco, G. C., Lavoura, L., and Silva, J. P., CP violation, Int. Ser. Monogr. Phys. 103 (1999) 1536.Google Scholar
[8] Donoghue, J. F., Golowich, E., and B. R. Holstein, Dynamics of the standard model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 (1992) 1540. [Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 35(2014)].Google Scholar
[9] Bigi, I. I. and Sanda, A., CP violation, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 9 (2000) 1382.Google Scholar
[10] Langacker, P., The Standard Model and Beyond. CRC Press, 2010.Google Scholar
[11] Ryder, L. H., Quantum Field Theory. Cambridge University Press, 1996.Google Scholar
[12] Gell-Mann, M., Ramond, P., and Slansky, R., Color embeddings, charge assignments, and proton stability in unified gauge theories, Rev. Mod. Phys. 50 (1978) 721.Google Scholar
[13] Bjorken, J. D. and Drell, S. D., Relativistic Quantum Fields. McGraw-Hill Book Company, 1965.Google Scholar
[14] Peskin, M. E. and Schroeder, D. V., An Introduction to Quantum Field Theory. Addison-Wesley Publishing Company, 1995.Google Scholar
[15] Weinberg, S., The Quantum Theory of Fields. Vol. 2: Modern Applications. Cambridge University Press, 1996.Google Scholar
[16] Bailin, D. and Love, A., Introduction to Gauge Field Theory. Adam Hilger, Bristol and Boston, 1986.Google Scholar
[17] Weinberg, S., Implications of dynamical symmetry breaking, Phys. Rev. D13 (1976) 974996.Google Scholar
[18] Pokorski, S., Gauge Field Theories. Cambridge University Press, 2005.Google Scholar
[19] Cabibbo, N., Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531533. [648(1963)].Google Scholar
[20] Kobayashi, M. and Maskawa, T., CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652657.Google Scholar
[21] Pontecorvo, B., Mesonium and antimesonium, Sov. Phys. JETP 6 (1957) 429.Google Scholar
[22] Maki, Z., Nakagawa, M., and Sakata, S., Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870.Google Scholar
[23] Bilenky, S., Introduction to the physics of massive and mixed neutrinos, Lect. Notes Phys. 817 (2010) 1255.Google Scholar
[24] Altmannshofer, W., Frugiuele, C., and Harnik, R., Fermion hierarchy from sfermion anarchy, JHEP 12 (2014) 180, [arXiv:1409.2522].Google Scholar
[25] Chau, L.-L. and Keung, W.-Y., Comments on the parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 53 (1984) 1802.CrossRefGoogle Scholar
[26] Wolfenstein, L., Parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 51 (1983) 1945.Google Scholar
[27] Buras, A. J., Lautenbacher, M. E., and Ostermaier, G., Waiting for the top quark mass, , mixing and CP asymmetries in B decays, Phys. Rev. D50 (1994) 34333446, [hep-ph/9403384].Google Scholar
[28] Branco, G. C. and Lavoura, L., Wolfenstein type parametrization of the quark mixing matrix, Phys. Rev. D38 (1988) 2295.Google Scholar
[29] Buras, A. J., Weak Hamiltonian, CP violation and rare decays, in Probing the Standard Model of Particle Interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, July 28–September 5, 1997. Pt. 1, 2, pp. 281–539, 1998. hep-ph/9806471.Google Scholar
[30] Jarlskog, C. and Stora, R., Unitarity polygons and CP violation areas and phases in the standard electroweak model, Phys. Lett. B208 (1988) 268274.Google Scholar
[31] Aleksan, R., Kayser, B., and London, D., Determining the quark mixing matrix from CP violating asymmetries, Phys. Rev. Lett. 73 (1994) 1820, [hep-ph/9403341].Google Scholar
[32] Jarlskog, C., Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation, Phys. Rev. Lett. 55 (1985) 1039.CrossRefGoogle Scholar
[33] Jarlskog, C., A basis independent formulation of the connection between quark mass matrices, CP violation and experiment, Z. Phys. C29 (1985) 491497.Google Scholar
[34] Buras, A. J., Parodi, F., and Stocchi, A., The CKM matrix and the unitarity triangle: Another look, JHEP 0301 (2003) 029, [hep-ph/0207101].Google Scholar
[35] Particle Data Group Collaboration, Tanabashi, M. et al., Review of particle physics, Phys. Rev. D98 (2018), no. 3 030001.Google Scholar
[36] Politzer, H. D., Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30 (1973) 13461349.Google Scholar
[37] Gross, D. J. and Wilczek, F., Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30 (1973) 13431346.Google Scholar
[38] Gross, D. J. and Wilczek, F., Asymptotically free gauge theories. 1, Phys. Rev. D8 (1973) 36333652.Google Scholar
[39] Gross, D. J. and Wilczek, F., Asymptotically Free gauge theories. 2., Phys. Rev. D9 (1974) 980993.Google Scholar
[40] Brambilla, N., Pineda, A., Soto, J., and Vairo, A., Effective field theories for heavy Quarkonium, Rev. Mod. Phys. 77 (2005) 1423, [hep-ph/0410047].Google Scholar
[41] Brambilla, N. et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C71 (2011) 1534, [arXiv:1010.5827].Google Scholar
[42] Brambilla, N. et al., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C74 (2014), no. 10 2981, [arXiv:1404.3723].Google Scholar
[43] Blanke, M., Introduction to flavour physics and CP violation, CERN Yellow Rep. School Proc. 1705 (2017) 71100, [arXiv:1704.03753].Google Scholar
[44] Zupan, J., Introduction to flavour physics, 2019. arXiv:1903.05062.Google Scholar
[45] Nir, Y., CP violation in and beyond the standard model, in CP Violation: In and beyond the Standard Model: Proceedings, 27th SLAC Summer Institute on Particle Physics (SSI 99): Stanford, USA, Jul 7–16 1999, 1999. hep-ph/9911321.Google Scholar
[46] Silvestrini, L., Effective theories for quark flavour physics, 2019. arXiv:1905.00798.Google Scholar
[47] Schwartz, M. D., Quantum Field Theory and the Standard Model. Cambridge University Press, 2014.Google Scholar
[48] Aoki, S. et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C77 (2017), no. 2 112, [arXiv:1607.00299].Google Scholar
[49] TUMQCD, Fermilab Lattice, MILC Collaboration, Bazavov, A. et al., B- and D-meson leptonic decay constants and quark masses from four-flavor lattice QCD, in 13th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2018) Palm Springs, California, USA, May 29–June 3, 2018, 2018. arXiv:1810.00250.Google Scholar
[50] Cirigliano, V., Ecker, G., Neufeld, H., Pich, A., and Portoles, J., Kaon decays in the standard model, Rev. Mod. Phys. 84 (2012) 399, [arXiv:1107.6001].Google Scholar
[51] Bernlochner, F. U., Ligeti, Z., Papucci, M., and Robinson, D. J., Combined analysis of semileptonic B decays to D and D∗: R(D(∗)), |V cb | , and new physics, Phys. Rev. D95 (2017), no. 11 115008, [arXiv:1703.05330].Google Scholar
[52] Gambino, P., Inclusive semileptonic B decays and |V cb | : In memoriam Kolya Uraltsev, Int. J. Mod. Phys. A30 (2015), no. 10 1543002, [arXiv:1501.00314].Google Scholar
[53] Colangelo, P. and De Fazio, F., Tension in the inclusive versus exclusive determinations of |V cb | : A possible role of new physics, Phys. Rev. D95 (2017), no. 1 011701, [arXiv:1611.07387].Google Scholar
[54] Bigi, D. and Gambino, P., Revisiting B → Dℓν , Phys. Rev. D94 (2016), no. 9 094008, [arXiv:1606.08030].Google Scholar
[55] Grinstein, B. and Kobach, A., Model-independent extraction of |V cb | from (2017) 359–364, [arXiv:1703.08170]. Phys. Lett. B771 Google Scholar
[56] Ricciardi, G., Semileptonic decays and |V xb | determinations, EPJ Web Conf. 182 (2018) 02104, [arXiv:1712.06988].Google Scholar
[57] Bigi, D., Gambino, P., and Schacht, S., A fresh look at the determination of |V cb | from B → D ℓν , Phys. Lett. B769 (2017) 441445, [arXiv:1703.06124].Google Scholar
[58] Bigi, D., Gambino, P., and Schacht, S., R(D ), |V cb | , and the heavy quark symmetry relations between form factors, JHEP 11 (2017) 061, [arXiv:1707.09509].Google Scholar
[59] De Fazio, F., Theory overview of tree-level B decays, in 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017) Venice, Italy, July 5–12, 2017, 2017. arXiv:1710.10017.Google Scholar
[60] Jung, M. and Straub, D. M., Constraining new physics in b → cℓν transitions, JHEP 01 (2019) 009, [arXiv:1801.01112].Google Scholar
[61] Fermilab Lattice, MILC Collaboration, Bailey, J. A. et al., Update of |V cb | from the ν̅ form fac- tor at zero recoil with three-flavor lattice QCD, Phys. Rev. D89 (2014) 114504, [arXiv:1403.0635].Google Scholar
[62] Fermilab Lattice, MILC Collaboration, Du, D. et al., B → πℓν semileptonic form factors from unquenched lattice QCD and determination of |V ub | , PoS LATTICE2014 (2014) 385, [arXiv:1411.6038].Google Scholar
[63] Bailey, J., Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., et al., B → πℓν semileptonic form factors from unquenched lattice QCD and determination of |V ub | , arXiv:1411.6038.Google Scholar
[64] Aoki, S., Aoki, Y., Bernard, C., Blum, T., Colangelo, G., et al., Review of lattice results concerning low- energy particle physics, Eur. Phys. J. C74 (2014), no. 9 2890, [arXiv:1310.8555].Google Scholar
[65] Alberti, A., Gambino, P., Healey, K. J., and Nandi, S., Precision determination of the Cabibbo-Kobayashi- Maskawa element V cb , Phys. Rev. Lett. 114 (2015) 061802, [arXiv:1411.6560].Google Scholar
[66] Caprini, I., Lellouch, L., and Neubert, M., Dispersive bounds on the shape of form-factors, Nucl. Phys. B530 (1998) 153–181, [hep-ph/9712417].Google Scholar
[67] Boyd, C. G., Grinstein, B., and Lebed, R. F., Constraints on form-factors for exclusive semileptonic heavy to light meson decays, Phys. Rev. Lett. 74 (1995) 4603–4606, [hep-ph/9412324].Google Scholar
[68] Bouchard, C., Cao, L., and Owen, P., Summary of the 2018 CKM working group on semileptonic and leptonic b-hadron decays, 2019. arXiv:1902.09412.Google Scholar
[69] Gambino, P., Jung, M., and Schacht, S., The V cb puzzle: An update, arXiv:1905.08209.Google Scholar
[70] Muta, T., Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories (3rd ed.), vol. 78 of World Scientific Lecture Notes in Physics. World Scientific, Hackensack, NJ, 2010.Google Scholar
[71] Buras, A. J. and Weisz, P. H., QCD nonleading corrections to weak decays in dimensional regularization and’t Hooft-Veltman schemes, Nucl. Phys. B333 (1990) 6699.Google Scholar
[72] Breitenlohner, P. and Maison, D., Dimensionally renormalized Green’s functions for theories with massless particles. 1, Commun. Math. Phys. 52 (1977) 39.Google Scholar
[73] Breitenlohner, P. and Maison, D., Dimensionally renormalized Green’s functions for theories with massless particles. 2, Commun. Math. Phys. 52 (1977) 55.Google Scholar
[74] Breitenlohner, P. and Maison, D., Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 1138.Google Scholar
[75] Bonneau, G., Consistency in dimensional regularization with γ 5 , Phys. Lett. B96 (1980) 147150.Google Scholar
[76] Bonneau, G., Preserving canonical ward identities in dimensional regularization with a nonanticommuting γ 5 , Nucl. Phys. B177 (1981) 523527.Google Scholar
[77] Buras, A. J., Climbing NLO and NNLO summits of weak decays, arXiv:1102.5650.Google Scholar
[78] Siegel, W., Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B84 (1979) 193196.Google Scholar
[79] Altarelli, G., Curci, G., Martinelli, G., and Petrarca, S., QCD nonleading corrections to weak decays as an application of regularization by dimensional reduction, Nucl. Phys. B187 (1981) 461513.Google Scholar
[80] Nicolai, H. and Townsend, P. K., Anomalies and supersymmetric regularization by dimensional reduction, Phys. Lett. B93 (1980) 111115.Google Scholar
[81] Majumdar, P., Poggio, E. C., and Schnitzer, H. J., The supersymmetry ward identity for the supersymmetric nonabelian gauge theory, Phys. Rev. D21 (1980) 2203.Google Scholar
[82] Grigjanis, R., O’Donnell, P. J., Sutherland, M., and Navelet, H., QCD corrected effective Lagrangian for Bs processes, Phys. Lett. B213 (1988) 355. [Erratum: Phys. Lett.B286,413(1992)].Google Scholar
[83] Misiak, M., On the dimensional methods in rare b decays, Phys. Lett. B321 (1994) 113–120, [hep-ph/9309236].Google Scholar
[84] Hooft, G.’t and Veltman, M. J. G., Regularization and renormalization of gauge fields, Nucl. Phys. B44 (1972) 189–213.Google Scholar
[85] Akyeampong, D. A. and Delbourgo, R., Anomalies via dimensional regularization, Nuovo Cim. A19 (1974) 219224.Google Scholar
[86] Akyeampong, D. A. and Delbourgo, R., Dimensional regularization and PCAC, Nuovo Cim. A18 (1973) 94104.Google Scholar
[87] Akyeampong, D. A. and Delbourgo, R., Dimensional regularization, abnormal amplitudes and anomalies, Nuovo Cim. A17 (1973) 578586.Google Scholar
[88] Körner, J. G., Nasrallah, N., and Schilcher, K., Evaluation of the flavor changing vertex bsH using the Breitenlohner-Maison-’t Hooft-Veltman γ 5 scheme, Phys. Rev. D41 (1990) 888.Google Scholar
[89] Jamin, M. and Lautenbacher, M. E., TRACER: Version 1.1: A Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265288.Google Scholar
[90] Collins, J. C., Renormalization, vol. 26 of Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, UK, 1986.Google Scholar
[91] Weinberg, S., Phenomenological Lagrangians, Physica A96 (1979) 327340.Google Scholar
[92] Hooft, G.’t, Dimensional regularization and the renormalization group, Nucl. Phys. B61 (1973) 455468.Google Scholar
[93] Weinberg, S., New approach to the renormalization group, Phys. Rev. D8 (1973) 34973509.Google Scholar
[94] Bardeen, W. A., Buras, A. J., Duke, D. W., and Muta, T., Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D18 (1978) 3998.Google Scholar
[95] Jones, D. R. T., Two loop diagrams in Yang-Mills theory, Nucl. Phys. B75 (1974) 531.Google Scholar
[96] Tarrach, R., The pole mass in perturbative QCD, Nucl. Phys. B183 (1981) 384396.Google Scholar
[97] Tarasov, O. V., Vladimirov, A. A., and Zharkov, A. Yu., The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B93 (1980) 429432.Google Scholar
[98] Larin, S. A. and Vermaseren, J. A. M., The three loop QCD Beta function and anomalous dimensions, Phys. Lett. B303 (1993) 334–336, [hep-ph/9302208].Google Scholar
[99] van Ritbergen, T., Vermaseren, J. A. M., and Larin, S. A., The four loop beta function in quantum chromodynamics, Phys. Lett. B400 (1997) 379–384, [hep-ph/9701390].Google Scholar
[100] Czakon, M., The four-loop QCD beta-function and anomalous dimensions, Nucl. Phys. B710 (2005) 485–498, [hep-ph/0411261].Google Scholar
[101] Baikov, P. A., Chetyrkin, K. G., and Kühn, J. H., Five-loop running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017), no. 8 082002, [arXiv:1606.08659].Google Scholar
[102] Herzog, F., Ruijl, B., Ueda, T., Vermaseren, J. A. M., and Vogt, A., The five-loop beta function of Yang-Mills theory with fermions, JHEP 02 (2017) 090, [arXiv:1701.01404].Google Scholar
[103] Larin, S. A., The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B303 (1993) 113118, [hep-ph/9302240].Google Scholar
[104] Chetyrkin, K. G., Quark mass anomalous dimension to O4 s), Phys. Lett. B404 (1997) 161165, [hep-ph/9703278].Google Scholar
[105] Vermaseren, J. A. M., Larin, S. A., and van Ritbergen, T., The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B405 (1997) 327333, [hep-ph/9703284].Google Scholar
[106] Baikov, P. A., Chetyrkin, K. G., and Kühn, J. H., Quark mass and field anomalous dimensions to O(α5 s), JHEP 10 (2014) 076, [arXiv:1402.6611].Google Scholar
[107] Wilson, K. G., Nonlagrangian models of current algebra, Phys. Rev. 179 (1969) 14991512.Google Scholar
[108] Wilson, K. G. and Zimmermann, W., Operator product expansions and composite field operators in the general framework of quantum field theory, Commun. Math. Phys. 24 (1972) 87106.Google Scholar
[109] Zimmermann, W., Normal products and the short distance expansion in the perturbation theory of renormalizable interactions, Annals Phys. 77 (1973) 570601. [Lect. Notes Phys. 558, 278(2000)].Google Scholar
[110] Witten, E., Short distance analysis of weak interactions, Nucl. Phys. B122 (1977) 109143.Google Scholar
[111] Buchalla, G., Buras, A. J., and Lautenbacher, M. E., Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 11251144, [hep-ph/9512380].Google Scholar
[112] Petrov, A. A. and Blechman, A. E., Effective Field Theories. WSP, 2016.Google Scholar
[113] Appelquist, T. and Carazzone, J., Infrared singularities and massive fields, Phys. Rev. D11 (1975) 2856.Google Scholar
[114] Wilson, K. G., The renormalization group and critical phenomena, Rev. Mod. Phys. 55 (1983) 583600.Google Scholar
[115] Marciano, W. J., Dimensional Regularization and Mass Singularities, Phys. Rev. D12 (1975) 3861.Google Scholar
[116] Buchalla, G. and Buras, A. J., QCD Corrections to the dZ vertex for arbitrary top quark mass, Nucl. Phys. B398 (1993) 285300.Google Scholar
[117] Greub, C. and Hurth, T., Two loop matching of the dipole operators for b and bsg , Phys. Rev. D56 (1997) 2934–2949, [hep-ph/9703349].Google Scholar
[118] Buras, A. J., Kwiatkowski, A., and Pott, N., Next-to-leading order matching for the magnetic photon penguin operator in the B → Xs γ decay, Nucl. Phys. B517 (1998) 353–373, [hep-ph/9710336].Google Scholar
[119] Altarelli, G. and Maiani, L., Octet enhancement of nonleptonic weak interactions in asymptotically free gauge theories, Phys. Lett. B52 (1974) 351354.Google Scholar
[120] Gaillard, M. and Lee, B. W., ΔI = 1/2 rule for nonleptonic decays in asymptotically free field theories, Phys. Rev. Lett. 33 (1974) 108.Google Scholar
[121] Buras, A. J., Asymptotic freedom in deep inelastic processes in the leading order and beyond, Rev. Mod. Phys. 52 (1980) 199.Google Scholar
[122] Buras, A. J., Jamin, M., Lautenbacher, M. E., and Weisz, P. H., Effective Hamiltonians for ΔS = 1 and ΔB = 1 nonleptonic decays beyond the leading logarithmic approximation, Nucl. Phys. B370 (1992) 69–104. [Addendum: Nucl. Phys. B375, 501(1992)].Google Scholar
[123] Buras, A. J., Jamin, M., and Lautenbacher, M. E., The anatomy of ε′/ε beyond leading logarithms with improved hadronic matrix elements, Nucl. Phys. B408 (1993) 209285, [hep-ph/9303284].Google Scholar
[124] Ciuchini, M., Franco, E., Martinelli, G., and Reina, L., ε′/ε at the next-to-leading order in QCD and QED, Phys. Lett. B301 (1993) 263–271, [hep-ph/9212203].Google Scholar
[125] M. Ciuchini, , E. Franco, , G. Martinelli, , and L. Reina, , The ΔS = 1 effective Hamiltonian including next- to-leading order QCD and QED corrections, Nucl. Phys. B415 (1994) 403–462, [hep-ph/9304257].Google Scholar
[126] Tracas, N. and Vlachos, N., Two loop calculations in QCD and the ΔI = 1/2 rule in nonleptonic weak decays, Phys. Lett. B115 (1982) 419.Google Scholar
[127] Buras, A. J. and Münz, M., Effective Hamiltonian for B → X se+e− beyond leading logarithms in the NDR and HV schemes, Phys. Rev. D52 (1995) 186195, [hep-ph/9501281].Google Scholar
[128] Buras, A. J., Kwiatkowski, A., and Pott, N., On the scale uncertainties in the B → Xs γ decay, Phys. Lett. B414 (1997) 157–165, [hep-ph/9707482]. [Erratum: Phys. Lett.B434,459(1998)].Google Scholar
[129] Dugan, M. J. and Grinstein, B., On the vanishing of evanescent operators, Phys. Lett. B256 (1991) 239244.Google Scholar
[130] Herrlich, S. and Nierste, U., Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B455 (1995) 39–58, [hep-ph/9412375].Google Scholar
[131] Buras, A. J., Lautenbacher, M. E., Misiak, M., and Münz, M., Direct CP violation in beyond leading logarithms, Nucl. Phys. B423 (1994) 349383, [hep-ph/9402347].Google Scholar
[132] Inami, T. and Lim, C., Effects of superheavy quarks and leptons in low-energy weak processes K L → μ + μ K+ → π+ , and K 0 0 , Prog. Theor. Phys. 65 (1981) 297.Google Scholar
[133] Buchalla, G., Buras, A. J., and Harlander, M. K., Penguin box expansion: Flavor changing neutral current processes and a heavy top quark, Nucl. Phys. B349 (1991) 147.Google Scholar
[134] Buchalla, G. and Buras, A. J., Two-loop large-mt electroweak corrections to for arbitrary Higgs boson mass, Phys. Rev. D57 (1998) 216–223, [hep-ph/9707243].Google Scholar
[135] Brod, J., Gorbahn, M., and Stamou, E., Two-loop electroweak corrections for the decays, Phys. Rev. D83 (2011) 034030, [arXiv:1009.0947].Google Scholar
[136] Brod, J. and Gorbahn, M., The Z penguin in generic extensions of the standard model, arXiv:1903.05116.Google Scholar
[137] Buras, A. J., Jamin, M., and Weisz, P. H., Leading and next-to-leading QCD corrections to ε parameter and mixing in the presence of a heavy top quark, Nucl. Phys. B347 (1990) 491536.Google Scholar
[138] Lenz, A., Nierste, U., Charles, J., Descotes-Genon, S., Jantsch, A., et al., Anatomy of new physics in mixing, Phys. Rev. D83 (2011) 036004, [arXiv:1008.1593].Google Scholar
[139] Herrlich, S. and Nierste, U., Enhancement of the K L − K S mass difference by short distance QCD corrections beyond leading logarithms, Nucl. Phys. B419 (1994) 292322, [hep-ph/9310311].CrossRefGoogle Scholar
[140] Herrlich, S. and Nierste, U., Indirect CP violation in the neutral kaon system beyond leading logarithms, Phys. Rev. D52 (1995) 6505–6518, [hep-ph/9507262].Google Scholar
[141] Herrlich, S. and Nierste, U., The Complete |ΔS | = 2 Hamiltonian in the next-to-leading order, Nucl. Phys. B476 (1996) 27–88, [hep-ph/9604330].Google Scholar
[142] Urban, J., Krauss, F., Jentschura, U., and Soff, G., Next-to-leading order QCD corrections for the mixing with an extended Higgs sector, Nucl. Phys. B523 (1998) 40–58, [hep-ph/9710245].Google Scholar
[143] Brod, J. and Gorbahn, M., ϵ K at Next-to-next-to-leading order: The charm-top-quark contribution, Phys. Rev. D82 (2010) 094026, [arXiv:1007.0684].Google Scholar
[144] Brod, J. and Gorbahn, M., Next-to-next-to-leading-order charm-quark contribution to the CP violation parameter ε K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801, [arXiv:1108.2036].Google Scholar
[145] Shifman, M. A., Vainshtein, A. I., and Zakharov, V. I., Nonleptonic decays of K mesons and hyperons, Sov. Phys. JETP 45 (1977) 670. [Zh. Eksp. Teor. Fiz.72,1275(1977)].Google Scholar
[146] Buras, A. J., Jamin, M., Lautenbacher, M. E., and Weisz, P. H., Two loop anomalous dimension matrix for ΔS = 1 weak nonleptonic decays. 1. O(α2 s), Nucl. Phys. B400 (1993) 37–74, [hep-ph/9211304].Google Scholar
[147] Chetyrkin, K. G., Misiak, M., and Münz, M., Weak radiative B meson decay beyond leading logarithms, Phys. Lett. B400 (1997) 206–219, [hep-ph/9612313]. [Erratum: Phys. Lett.B425,414(1998)].Google Scholar
[148] Fleischer, R., CP violation and the role of electroweak penguins in nonleptonic B decays, Int. J. Mod. Phys. A12 (1997) 2459–2522, [hep-ph/9612446].Google Scholar
[149] Misiak, M. et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015), no. 22 221801, [arXiv:1503.01789].Google Scholar
[150] HFLAV Collaboration, Amhis, Y. et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, Eur. Phys. J. C77 (2017), no. 12 895, [arXiv:1612.07233].Google Scholar
[151] Bertolini, S., Borzumati, F., and Masiero, A., QCD enhancement of radiative b decays, Phys. Rev. Lett. 59 (1987) 180.Google Scholar
[152] Deshpande, N. G., Lo, P., Trampetic, J., Eilam, G., and Singer, P., B → K γ and the top quark mass, Phys. Rev. Lett. 59 (1987) 183185.Google Scholar
[153] Ciuchini, M., Franco, E., Martinelli, G., Reina, L., and Silvestrini, L., Scheme independence of the effective Hamiltonian for b → s γ and b → s g decays, Phys. Lett. B316 (1993) 127–136, [hep-ph/9307364].Google Scholar
[154] Ciuchini, M., Franco, E., Reina, L., and Silvestrini, L., Leading order QCD corrections to b → s γ and b → s g decays in three regularization schemes, Nucl. Phys. B421 (1994) 41–64, [hep-ph/9311357].Google Scholar
[155] Cella, G., Curci, G., Ricciardi, G., and Vicere, A., The b → s γ decay revisited, Phys. Lett. B325 (1994) 227–234, [hep-ph/9401254].Google Scholar
[156] Cella, G., Curci, G., Ricciardi, G., and Vicere, A., QCD corrections to electroweak processes in an unconventional scheme: Application to the b → s γ decay, Nucl. Phys. B431 (1994) 417–452, [hep-ph/9406203].Google Scholar
[157] Misiak, M., The b → se+e− and b → sγ decays with next-to-leading logarithmic QCD corrections, Nucl. Phys. B393 (1993) 23–45. [Erratum: Nucl. Phys.B439,461(1995)].Google Scholar
[158] Ali, A. and Greub, C., A determination of the CKM matrix element ratio |V t s | /|V cb | from the rare B decays B → K γ and B → X s γ , Z. Phys. C60 (1993) 433442.Google Scholar
[159] Buras, A. J., Misiak, M., Münz, M., and Pokorski, S., Theoretical uncertainties and phenomenological aspects of B → X s γ decay, Nucl. Phys. B424 (1994) 374–398, [hep-ph/9311345].Google Scholar
[160] Buras, A. J. and Misiak, M., B̅ → X s γ after completion of the NLO QCD calculations, Acta Phys. Polon. B33 (2002) 2597–2612, [hep-ph/0207131].Google Scholar
[161] Adel, K. and Yao, Y.-P., Exact α s calculation of b → sγ and b → sg , Phys. Rev. D49 (1994) 4945–4948, [hep-ph/9308349].Google Scholar
[162] Ciuchini, M., Degrassi, G., Gambino, P., and Giudice, G. F., Next-to-leading QCD corrections to B → X s γ: Standard model and two Higgs doublet model, Nucl. Phys. B527 (1998) 21–43, [hep-ph/9710335].Google Scholar
[163] Misiak, M. and Münz, M., Two loop mixing of dimension five flavor changing operators, Phys. Lett. B344 (1995) 308–318, [hep-ph/9409454].Google Scholar
[164] Gambino, P., Gorbahn, M., and Haisch, U., Anomalous dimension matrix for radiative and rare semilep- tonic B decays up to three loops, Nucl. Phys. B673 (2003) 238–262, [hep-ph/0306079].Google Scholar
[165] Chetyrkin, K. G., Misiak, M., and Münz, M., Beta functions and anomalous dimensions up to three loops, Nucl. Phys. B518 (1998) 473–494, [hep-ph/9711266].Google Scholar
[166] Ali, A. and Greub, C., Photon energy spectrum in B → Xs γ and comparison with data, Phys. Lett. B361 (1995) 146–154, [hep-ph/9506374].Google Scholar
[167] Pott, N., Bremsstrahlung corrections to the decay b → sγ , Phys. Rev. D54 (1996) 938–948, [hep-ph/9512252].Google Scholar
[168] Greub, C., Hurth, T., and Wyler, D., Virtual Corrections to the decay b → sγ , Phys. Lett. B380 (1996) 385392, [hep-ph/9602281].Google Scholar
[169] Greub, C., Hurth, T., and Wyler, D., Virtual O(αs) Corrections to the inclusive decay b → sγ , Phys. Rev. D54 (1996) 3350–3364, [hep-ph/9603404].Google Scholar
[170] Buras, A. J., Czarnecki, A., Misiak, M., and Urban, J., Two-loop matrix element of the current-current operator in the decay B̅ → Xsγ , Nucl. Phys. B611 (2001) 488–502, [hep-ph/0105160].Google Scholar
[171] Buras, A. J., Czarnecki, A., Misiak, M., and Urban, J., Completing the NLO QCD Calculation of B̅ → Xsγ , Nucl. Phys. B631 (2002) 219–238, [hep-ph/0203135].Google Scholar
[172] Gambino, P. and Misiak, M., Quark mass effects in B̅ → Xsγ , Nucl. Phys. B611 (2001) 338–366, [hep-ph/0104034].Google Scholar
[173] Misiak, M. and Steinhauser, M., NNLO QCD corrections to the matrix elements using interpolation in m c , Nucl. Phys. B764 (2007) 62–82, [hep-ph/0609241].Google Scholar
[174] Grinstein, B., Springer, R. P., and Wise, M. B., Strong interaction effects in weak radiative meson decay, Nucl. Phys. B339 (1990) 269309.Google Scholar
[175] Cabibbo, N. and Maiani, L., The lifetime of charmed particles, Phys. Lett. B79 (1978) 109111.Google Scholar
[176] Kim, C. S. and Martin, A. D., On the determination of V ub and V cb from semileptonic B decays, Phys. Lett. B225 (1989) 186190.Google Scholar
[177] Nir, Y., The mass ratio m c /m b in semileptonic B decays, Phys. Lett. B221 (1989) 184190.Google Scholar
[178] Kagan, A. L. and Neubert, M., QCD anatomy of decays, Eur. Phys. J. C7 (1999) 5–27, [hep-ph/9805303].Google Scholar
[179] Borzumati, F. and Greub, C., 2HDMs predictions for in NLO QCD, Phys. Rev. D58 (1998) 074004, [hep-ph/9802391].Google Scholar
[180] Czarnecki, A. and Marciano, W. J., Electroweak radiative corrections to b → sγ , Phys. Rev. Lett. 81 (1998) 277–280, [hep-ph/9804252].Google Scholar
[181] Buchalla, G. and Buras, A. J., The rare decays K → πv̅v , B → Xv̅v, and B → ℓ+ℓ−: An update, Nucl. Phys. B548 (1999) 309–327, [hep-ph/9901288].Google Scholar
[182] Misiak, M. and Urban, J., QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B451 (1999) 161–169, [hep-ph/9901278].Google Scholar
[183] Bobeth, C., Gambino, P., Gorbahn, M., and Haisch, U., Complete NNLO QCD analysis of and higher order electroweak effects, JHEP 04 (2004) 071, [hep-ph/0312090].Google Scholar
[184] Huber, T., Lunghi, E., Misiak, M., and Wyler, D., Electromagnetic logarithms in B̅ → X s l+l− , Nucl. Phys. B740 (2006) 105–137, [hep-ph/0512066].Google Scholar
[185] Misiak, M., Rare B-meson decays, in Proceedings, 15th Lomonosov Conference on Elementary Particle Physics (LomCon): Particle Physics at the Tercentenary of Mikhail Lomonosov, pp. 301–305, 2013. arXiv:1112.5978.Google Scholar
[186] Buras, A. J., Girrbach, J., Guadagnoli, D., and Isidori, G., On the standard model prediction for B(B s,d → μ + μ ), Eur. Phys. J. C72 (2012) 2172, [arXiv:1208.0934].Google Scholar
[187] Bobeth, C., Gorbahn, M., and Stamou, E., Electroweak corrections to B s,d → ℓ + , Phys. Rev. D89 (2014) 034023, [arXiv:1311.1348].Google Scholar
[188] Hermann, T., Misiak, M., and Steinhauser, M., Three-loop QCD corrections to B s → μ + μ , JHEP 1312 (2013) 097, [arXiv:1311.1347].Google Scholar
[189] Bobeth, C., Gorbahn, M., Hermann, T., Misiak, M., Stamou, E., et al., B s,d → ℓ + in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801, [arXiv:1311.0903].Google Scholar
[190] Buras, A. J., De Fazio, F., and Girrbach, J., 331 models facing new b → sμ + μ data, JHEP 1402 (2014) 112, [arXiv:1311.6729].Google Scholar
[191] Dib, C., Dunietz, I., and Gilman, F. J., CP violation in the KL → π 0 + decay amplitude for large m t , Phys. Lett. B218 (1989) 487492.Google Scholar
[192] Flynn, J. and Randall, L., The CP violating contribution to the decay K L → π 0 e + e , Nucl. Phys. B326 (1989) 31. [Erratum: Nucl. Phys.B334,580(1990)].Google Scholar
[193] Buchalla, G. and Buras, A. J., sin 2β from Kπν v̅, Phys. Lett. B333 (1994) 221–227, [hep-ph/9405259].Google Scholar
[194] Ellis, J. R. and Hagelin, J. S., Constraints on light particles from kaon decays, Nucl. Phys. B217 (1983) 189214.Google Scholar
[195] Dib, C., Dunietz, I., and Gilman, F. J., Strong interaction corrections to the decay Kπ neutrino anti-neutrino for large m t , Mod. Phys. Lett. A6 (1991) 35733582.Google Scholar
[196] Buchalla, G. and Buras, A. J., QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B400 (1993) 225239.Google Scholar
[197] Buchalla, G. and Buras, A. J., The rare decays K +π + v v̅ and K L μ + μ beyond leading logarithms, Nucl. Phys. B412 (1994) 106–142, [hep-ph/9308272].Google Scholar
[198] Buras, A. J., Gorbahn, M., U. Haisch, and U. Nierste, The rare decay K +π + v v̅ at the next-to-next-to-leading order in QCD, Phys. Rev. Lett. 95 (2005) 261805, [hep-ph/0508165].Google Scholar
[199] Buras, A. J., Gorbahn, M., Haisch, U., and Nierste, U., Charm quark contribution to K +π + v v̅ at next-to-next-to-leading order, JHEP 11 (2006) 002, [hep-ph/0603079].Google Scholar
[200] Gorbahn, M. and Haisch, U., Effective Hamiltonian for non-leptonic |ΔF | = 1 decays at NNLO in QCD, Nucl. Phys. B713 (2005) 291–332, [hep-ph/0411071].Google Scholar
[201] Isidori, G., Mescia, F., and Smith, C., Light-quark loops in Kπν v̅, Nucl. Phys. B718 (2005) 319–338, [hep-ph/0503107].Google Scholar
[202] Mescia, F. and Smith, C., Improved estimates of rare K decay matrix-elements from K 3 decays, Phys. Rev. D76 (2007) 034017, [arXiv:0705.2025].Google Scholar
[203] Brod, J. and Gorbahn, M., Electroweak corrections to the charm quark contribution to K +π + v v̅, Phys. Rev. D78 (2008) 034006, [arXiv:0805.4119].Google Scholar
[204] Ceccucci, A., Review and outlook on kaon physics, Acta Phys. Polon. B49 (2018) 10791086.Google Scholar
[205] Komatsubara, T., Experiments with K-meson decays, Prog. Part. Nucl. Phys. 67 (2012) 9951018, [arXiv:1203.6437].Google Scholar
[206] KOTO Collaboration, Shiomi, K., K L 0π 0 v v̅ at KOTO, in 8th International Workshop on the CKM Unitarity Triangle (CKM 2014) Vienna, Austria, September 8–12, 2014, 2014. arXiv:1411.4250.Google Scholar
[207] Buras, A. J., Schwab, F., and Uhlig, S., Waiting for precise measurements of K +π + v v̅ and K L π 0 v v̅ , Rev. Mod. Phys. 80 (2008) 965–1007, [hep-ph/0405132].Google Scholar
[208] Buras, A. J. and Girrbach, J., Towards the identification of new physics through quark flavour violating processes, Rept. Prog. Phys. 77 (2014) 086201, [arXiv:1306.3775].Google Scholar
[209] Blanke, M., New physics signatures in kaon decays, PoS KAON13 (2013) 010, [arXiv:1305.5671].Google Scholar
[210] Smith, C., Rare K decays: Challenges and perspectives, arXiv:1409.6162.Google Scholar
[211] Buras, A. J., Buttazzo, D., Girrbach-Noe, J., and Knegjens, R., Can we reach the Zeptouniverse with rare K and B s,d decays? JHEP 1411 (2014) 121, [arXiv:1408.0728].Google Scholar
[212] Buras, A. J., Buttazzo, D., Girrbach-Noe, J., and Knegjens, R., K +π + νν and K L π 0 νν in the standard model: Status and perspectives, JHEP 11 (2015) 033, [arXiv:1503.02693].Google Scholar
[213] Isidori, G., Martinelli, G., and Turchetti, P., Rare kaon decays on the lattice, Phys. Lett. B633 (2006) 75–83, [hep-lat/0506026].Google Scholar
[214] RBC, UKQCD Collaboration, Christ, N. H., Feng, X., Portelli, A., and Sachrajda, C. T., Prospects for a lattice computation of rare kaon decay amplitudes II Kπν v̅ decays, Phys. Rev. D93 (2016), no. 11 114517, [arXiv:1605.04442].Google Scholar
[215] Chetyrkin, K., Kühn, J., Maier, A., Maierhofer, P., Marquard, P., et al., Charm and bottom quark masses: An update, Phys. Rev. D80 (2009) 074010, [arXiv:0907.2110].Google Scholar
[216] Buras, A. J. and Fleischer, R., Bounds on the unitarity triangle, sin 2β and Kπν v̅ decays in models with minimal flavor violation, Phys. Rev. D64 (2001) 115010, [hep-ph/0104238].Google Scholar
[217] Hooft, G.’t, A planar diagram theory for strong interactions, Nucl. Phys. B72 (1974) 461.Google Scholar
[218] Hooft, G.’t, A two-dimensional model for mesons, Nucl. Phys. B75 (1974) 461.Google Scholar
[219] Witten, E., Baryons in the 1/N expansion, Nucl. Phys. B160 (1979) 57.Google Scholar
[220] Treiman, S. B., Witten, E., Jackiw, R., and Zumino, B., Current algebra and anomalies. 1986.Google Scholar
[221] Bardeen, W. A., Buras, A. J., and Gérard, J.-M., A consistent analysis of the ΔI = 1/2 rule for K decays, Phys. Lett. B192 (1987) 138.Google Scholar
[222] Fukugita, M., Inami, T., Sakai, N., and Yazaki, S., Nonleptonic decays of kaons in the 1/N expansion, Phys. Lett. B72 (1977) 237.Google Scholar
[223] Nilles, H. P. and Visnjic-Triantafillou, V., Nonleptonic weak decays in QCD in two-dimensions, Phys. Rev. D19 (1979) 969.Google Scholar
[224] Tadic, D. and Trampetic, J., Weak meson decays and the 1/N expansion, Phys. Lett. B114 (1982) 179.Google Scholar
[225] Buras, A. J., Gérard, J.-M., and Rückl, R., 1/N expansion for exclusive and inclusive charm decays, Nucl. Phys. B268 (1986) 16.Google Scholar
[226] Wirbel, M., Stech, B., and Bauer, M., Exclusive semileptonic decays of heavy mesons, Z. Phys. C29 (1985) 637.Google Scholar
[227] Bardeen, W. A., Buras, A. J., and Gérard, J.-M., The ΔI = 1/2 rule in the large N limit, Phys. Lett. B180 (1986) 133.Google Scholar
[228] Bardeen, W. A., Buras, A. J., and Gérard, J.-M., The Kππ decays in the large N limit: Quark evolution, Nucl. Phys. B293 (1987) 787.Google Scholar
[229] Bardeen, W. A., Buras, A. J., and Gérard, J.-M., The B parameter beyond the leading order of 1/N expansion, Phys. Lett. B211 (1988) 343.Google Scholar
[230] Buras, A. J. and Gérard, J.-M., 1/N expansion for kaons, Nucl. Phys. B264 (1986) 371.Google Scholar
[231] Gaiser, B. D., Tsao, T., and Wise, M. B., Parameters of the six quark model, Annals Phys. 132 (1981) 66.Google Scholar
[232] Buras, A. J., The 1/N approach to nonleptonic weak interactions, Adv. Ser. Direct. High Energy Phys. 3 (1989) 575645.Google Scholar
[233] Buras, A. J., Phenomenological applications of the 1/N expansion, Nucl. Phys. Proc. Suppl. 10A (1989) 199267.Google Scholar
[234] Bardeen, W. A., Weak decay amplitudes in large N QCD, Nucl. Phys. Proc. Suppl. 7A (1989) 149.Google Scholar
[235] Buras, A. J., Strangeness and the large N expansion, Nucl. Phys. A479 (1988) 399C–421C.Google Scholar
[236] Gérard, J.-M., Electroweak interactions of hadrons, Acta Phys. Polon. B21 (1990) 257305.Google Scholar
[237] Bardeen, W. A., Weak matrix elements in the large N c limit, Proceedings KAON99 (1999) 171176.Google Scholar
[238] Bardeen, W. A., On the large N c expansion in quantum chromodynamics, Fortsch. Phys. 50 (2002) 483–488, [hep-ph/0112229].Google Scholar
[239] Buras, A. J., Gérard, J.-M., and Bardeen, W. A., Large N approach to kaon decays and mixing 28 years later: ΔI = 1/2 rule, K and ΔM K , Eur. Phys. J. C74 (2014), no. 5 2871, [arXiv:1401.1385].Google Scholar
[240] Buras, A. J., ΔI = 1/2 rule and K : 2014, in Proceedings, 7th International Workshop on Quantum Chromodynamics Theory and Experiment (QCD@Work 2014): Giovinazzo, Bari, Italy, June 16–19, 2014, 2014. arXiv:1408.4820.Google Scholar
[241] Shifman, M. A., Vainshtein, A., and Zakharov, V. I., Light quarks and the origin of the ΔI = 1/2 rule in the nonleptonic decays of strange particles, Nucl. Phys. B120 (1977) 316.Google Scholar
[242] Fajfer, S. and Gérard, J.-M., A simple chiral Lagrangian approach to Kπππ decays and ɛ ′ +0-, Z. Phys. C42 (1989) 425.Google Scholar
[243] Bijnens, J., Gérard, J.-M., and Klein, G., The K L K S mass difference, Phys. Lett. B257 (1991) 191–195.Google Scholar
[244] Buras, A. J. and Gérard, J.-M., Upper bounds on ε ′ /ε parameters B 6 (1/2) and B 8 (3/2) from large N QCD and other news, JHEP 12 (2015) 008, [arXiv:1507.06326].Google Scholar
[245] Buras, A. J. and Gérard, J.-M., Final state interactions in K′ → ππ decays: ΔI = 1/2 rule vs. ε ′ /ε , Eur. Phys. J. C77 (2017), no. 1 10, [arXiv:1603.05686].Google Scholar
[246] Aebischer, J., Buras, A. J., and Gérard, J.-M., BSM Hadronic matrix elements for ε ′ /ε and Kππ decays in the dual QCD approach, JHEP 02 (2019) 021, [arXiv:1807.01709].Google Scholar
[247] Gisbert, H. and Pich, A., Direct CP violation in K 0ππ: Standard model status, Rept. Prog. Phys. 81 (2018), no. 7 076201, [arXiv:1712.06147].Google Scholar
[248] Bijnens, J. and Guberina, B., Chiral perturbation theory and the evaluation of 1/N c corrections to nonleptonic decays, Phys. Lett. B205 (1988) 103.Google Scholar
[249] Pich, A. and de Rafael, E., Weak K amplitudes in the chiral and 1/N expansions, Phys. Lett. B374 (1996) 186–192, [hep-ph/9511465].Google Scholar
[250] Bijnens, J. and Prades, J., The B K parameter in the 1/N expansion, Nucl. Phys. B444 (1995) 523–562, [hep-ph/9502363].Google Scholar
[251] Bijnens, J. and Prades, J., The ΔI = 1/2 rule in the chiral limit, JHEP 9901 (1999) 023, [hep-ph/9811472].Google Scholar
[252] Hambye, T., Kohler, G., Paschos, E., Soldan, P., and W. A. Bardeen, 1/N corrections to the hadronic matrix elements of Q 6 and Q 8 in Kππ decays, Phys. Rev. D58 (1998) 014017, [hep-ph/9802300].Google Scholar
[253] Hambye, T., Kohler, G., and Soldan, P., New analysis of the ΔI = 1/2 rule in kaon decays and the ̂B K parameter, Eur. Phys. J. C10 (1999) 271–292, [hep-ph/9902334].Google Scholar
[254] Peris, S. and de, E. Rafael, K 0 0 mixing in the 1/N expansion, Phys. Lett. B490 (2000) 213–222, [hep-ph/0006146].Google Scholar
[255] Cirigliano, V., F, J.. Donoghue, E. Golowich, and K. Maltman, Improved determination of the electroweak penguin contribution to ε ′ /ε in the chiral limit, Phys. Lett. B555 (2003) 71–82, [hep-ph/0211420].Google Scholar
[256] Hambye, T., Peris, S., and E. de Rafael, ΔI = 1/2 and ε ′ /ε in large N QCD, JHEP 05 (2003) 027, [hep-ph/0305104].Google Scholar
[257] Lucini, B. and Panero, M., SU(N) gauge theories at large N, Phys. Rept. 526 (2013) 93163, [arXiv:1210.4997].Google Scholar
[258] Coleman, S. R. and Witten, E., Chiral symmetry breakdown in large N chromodynamics, Phys. Rev. Lett. 45 (1980) 100.Google Scholar
[259] Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505532, [hep-th/9803131].Google Scholar
[260] Polchinski, J. and Strassler, M. J., Hard scattering and gauge / string duality, Phys. Rev. Lett. 88 (2002) 031601, [hep-th/0109174].Google Scholar
[261] Hambye, T., Hassanain, B., J. March-Russell, and M. Schvellinger, On the ΔI = 1/2 rule in holographic QCD, Phys. Rev. D74 (2006) 026003, [hep-ph/0512089].Google Scholar
[262] Hambye, T., Hassanain, B., J. March-Russell, and M. Schvellinger, Four-point functions and kaon decays in a minimal AdS/QCD model, Phys. Rev. D76 (2007) 125017, [hep-ph/0612010].Google Scholar
[263] Fatelo, J. P. and Gérard, J. M., Current current operator evolution in the chiral limit, Phys. Lett. B347 (1995) 136142.Google Scholar
[264] Chivukula, R. S., Flynn, J., and Georgi, H., Polychromatic penguins don’t fly, Phys. Lett. B171 (1986) 453458.Google Scholar
[265] Gasser, J. and Leutwyler, H., Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142.Google Scholar
[266] Gell-Mann, M. and Pais, A., Behavior of neutral particles under charge conjugation, Phys. Rev. 97 (1955) 13871389.Google Scholar
[267] Gell-Mann, M. and Rosenfeld, A., Hyperons and heavy mesons (systematics and decay), Ann. Rev. Nucl. Part. Sci. 7 (1957) 407478.Google Scholar
[268] Fermi, E., An attempt of a theory of beta radiation. 1., Z. Phys. 88 (1934) 161–177.Google Scholar
[269] Feynman, R. P. and Gell-Mann, M., Theory of Fermi interaction, Phys. Rev. 109 (1958) 193198.Google Scholar
[270] Sudarshan, E. C. G. and e, R.. Marshak, Chirality invariance and the universal Fermi interaction, Phys. Rev. 109 (1958) 1860–1860.Google Scholar
[271] Buras, A. J., De Fazio, F., and Girrbach, J., ΔI = 1/2 rule, ε ′ /ε and Kπν v̅ in Z ′ (Z) and G ′ models with FCNC quark couplings, Eur. Phys. J. C74 (2014) 2950, [arXiv:1404.3824].Google Scholar
[272] Gérard, J.-M., An upper bound on the kaon B-parameter and Re(ɛ K ), JHEP 1102 (2011) 075, [arXiv:1012.2026].Google Scholar
[273] Buras, A. J. and Gérard, J. M., Isospin breaking contributions to ε ′ /ε , Phys. Lett. B192 (1987) 156.Google Scholar
[274] Blum, T., Boyle, P., Christ, N., Garron, N., Goode, E., et al., Lattice determination of the K → (ππ) I=2 decay amplitude A 2 , Phys. Rev. D86 (2012) 074513, [arXiv:1206.5142].Google Scholar
[275] Blum, T. et al., Kππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D91 (2015), no. 7 074502, [arXiv:1502.00263].Google Scholar
[276] RBC, UKQCD Collaboration, Z. Bai et al., Standard model prediction for direct CP violation in K decay, Phys. Rev. Lett. 115 (2015), no. 21 212001, [arXiv:1505.07863].Google Scholar
[277] Bijnens, J. and Prades, J., ε ′ /ε in the chiral limit, JHEP 06 (2000) 035, [hep-ph/0005189].Google Scholar
[278] Bijnens, J., Gamiz, E., and Prades, J., Matching the electroweak penguins Q 7, Q 8 and spectral correlators, JHEP 10 (2001) 009, [hep-ph/0108240].Google Scholar
[279] Cirigliano, V., F, J.. Donoghue, E. Golowich, and K. Maltman, Determination of 〈(ππ)I = 2|Q 7,8 |K 0 〉 in the chiral limit, Phys. Lett. B522 (2001) 245–256, [hep-ph/0109113].Google Scholar
[280] Antonelli, V., Bertolini, S., M. Fabbrichesi, and E. I. Lashin, The ΔI = 1/2 selection rule, Nucl. Phys. B469 (1996) 181–201, [hep-ph/9511341].Google Scholar
[281] Bertolini, S., O, J.. Eeg, and M. Fabbrichesi, A new estimate of ε ′ /ε , Nucl. Phys. B476 (1996) 225–254, [hep-ph/9512356].Google Scholar
[282] Pallante, E. and Pich, A., Strong enhancement of ε ′ /ε through final state interactions, Phys. Rev. Lett. 84 (2000) 2568–2571, [hep-ph/9911233].Google Scholar
[283] Pallante, E. and Pich, A., Final state interactions in kaon decays, Nucl. Phys. B592 (2001) 294–320, [hep-ph/0007208].Google Scholar
[284] Buchler, M., Colangelo, G., J. Kambor, and F. Orellana, A note on the dispersive treatment of Kππ with the kaon off-shell, Phys. Lett. B521 (2001) 29–32, [hep-ph/0102289].Google Scholar
[285] Buchler, M., Colangelo, G., J. Kambor, and F. Orellana, Dispersion relations and soft pion theorems for Kππ , Phys. Lett. B521 (2001) 22–28, [hep-ph/0102287].Google Scholar
[286] Pallante, E., Pich, A., and Scimemi, I., The standard model prediction for ε ′ /ε , Nucl. Phys. B617 (2001) 441–474, [hep-ph/0105011].Google Scholar
[287] Aoki, S. et al., FLAG review 2019, arXiv:1902.08191.Google Scholar
[288] Aoki, Y., Arthur, R., Blum, T., Boyle, P., Brommel, D., et al., Continuum limit of B K from 2+1 flavor domain wall QCD, Phys. Rev. D84 (2011) 014503, [arXiv:1012.4178].Google Scholar
[289] Bae, T., Jang, Y.-C., Jung, C., Kim, H.-J., Kim, J., et al., B K using HYP-smeared staggered fermions in N f = 2 + 1 unquenched QCD, Phys. Rev. D82 (2010) 114509, [arXiv:1008.5179].Google Scholar
[290] ETM Collaboration, M. Constantinou, et al., B K -parameter from N f = 2 twisted mass lattice QCD, Phys. Rev. D83 (2011) 014505, [arXiv:1009.5606].Google Scholar
[291] Colangelo, G., Durr, S., Juttner, A., Lellouch, L., Leutwyler, H., et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C71 (2011) 1695, [arXiv:1011.4408].Google Scholar
[292] Bailey, J. A., Bae, T., Jang, Y.-C., Jeong, H., Jung, C., et al., Beyond the standard model corrections to K 0 0 mixing, PoS LATTICE2012 (2012) 107, [arXiv:1211.1101].Google Scholar
[293] Durr, S., Fodor, Z., Hoelbling, C., Katz, S., Krieg, S., et al., Precision computation of the kaon bag parameter, Phys. Lett. B705 (2011) 477481, [arXiv:1106.3230].Google Scholar
[294] SWME Collaboration, Bae, T., et al., Improved determination of ̂B K with staggered quarks, Phys. Rev. D89 (2014), no. 7 074504, [arXiv:1402.0048].Google Scholar
[295] ETM Collaboration, Carrasco, N., Dimopoulos, P., Frezzotti, R., Lubicz, V., G. Rossi, C., Simula, S., and Tarantino, C., ΔS = 2 and ΔC = 2 bag parameters in the standard model and beyond from N f =2+1+1 twisted-mass lattice QCD, Phys. Rev. D92 (2015), no. 3 034516, [arXiv:1505.06639].Google Scholar
[296] Buras, A. J., Gorbahn, M., Jäger, S., and Jamin, M., Improved anatomy of ε ′ /ε in the standard model, JHEP 11 (2015) 202, [arXiv:1507.06345].Google Scholar
[297] Bai, Z., H, N.. Christ, Feng, X., Lawson, A., Portelli, A., and Sachrajda, C. T., Exploratory lattice QCD study of the rare kaon decay K +π + v v̅ , Phys. Rev. Lett. 118 (2017), no. 25 252001, [arXiv:1701.02858].Google Scholar
[298] RBC, UKQCD Collaboration, N. Christ, H., Feng, X., Portelli, A., and Sachrajda, C. T., Prospects for a lattice computation of rare kaon decay amplitudes: Kπℓ + decays, Phys. Rev. D92 (2015), no. 9 094512, [arXiv:1507.03094].Google Scholar
[299] N. Christ, H., Feng, X., Juttner, A., Lawson, A., Portelli, A., and Sachrajda, C. T., First exploratory calculation of the long-distance contributions to the rare kaon decays Kπℓ + , Phys. Rev. D94 (2016), no. 11 114516, [arXiv:1608.07585].Google Scholar
[300] RBC, UKQCD Collaboration, N. Christ, H., Izubuchi, T., C. Sachrajda, T., Soni, A., and Yu, J., Long distance contribution to the K L K S mass difference, Phys. Rev. D88 (2013) 014508, [arXiv:1212.5931].Google Scholar
[301] Bai, Z., Christ, N. H., Izubuchi, T., Sachrajda, C. T., Soni, A., and Yu, J., K L K S Mass difference from lattice QCD, Phys. Rev. Lett. 113 (2014) 112003, [arXiv:1406.0916].Google Scholar
[302] Carrasco, N., Lubicz, V., Martinelli, G., T, C.. Sachrajda, Tantalo, N., Tarantino, C., and Testa, M., QED Corrections to hadronic processes in lattice QCD, Phys. Rev. D91 (2015), no. 7 074506, [arXiv:1502.00257].Google Scholar
[303] Lubicz, V., Martinelli, G., C. Sachrajda, T., Sanfilippo, F., Simula, S., and Tantalo, N., Finite-volume QED corrections to decay amplitudes in lattice QCD, Phys. Rev. D95 (2017), no. 3 034504, [arXiv:1611.08497].Google Scholar
[304] Giusti, D., Lubicz, V., Martinelli, G., T, C.. Sachrajda, Sanfilippo, F., Simula, S., Tantalo, N., and Tarantino, C., First lattice calculation of the QED corrections to leptonic decay rates, Phys. Rev. Lett. 120 (2018), no. 7 072001, [arXiv:1711.06537].Google Scholar
[305] Cerri, A., V, V.. Gligorov, Malvezzi, S., Martin, J. Camalich, and J. Zupan, Opportunities in flavour physics at the HL-LHC and HE-LHC, arXiv:1812.07638.Google Scholar
[306] Lehner, C. et al., Opportunities for lattice QCD in quark and lepton flavor physics, arXiv:1904.09479.Google Scholar
[307] Cirigliano, V., Davoudi, Z., Bhattacharya, T., Izubuchi, T., P. Shanahan, E., Syritsyn, S., and Wagman, M. L., The role of lattice QCD in searches for violations of fundamental symmetries and signals for new physics, arXiv:1904.09704.Google Scholar
[308] Jo, B., Jung, C., N. Christ, H., Detmold, W., Edwards, R., Savage, M., and Shanahan, P., Status and future perspectives for lattice gauge theory calculations to the exascale and beyond, arXiv:1904.09725.Google Scholar
[309] Beneke, M., Buchalla, G., Neubert, M., and Sachrajda, C. T., QCD factorization for B, ππ Decays: Strong phases and CP violation in the heavy quark limit, Phys. Rev. Lett. 83 (1999) 1914–1917, [hep-ph/9905312].Google Scholar
[310] Beneke, M., Buchalla, G., Neubert, M., and Sachrajda, C. T., QCD factorization for exclusive, nonleptonic B meson decays: General arguments and the case of heavy light final states, Nucl. Phys. B591 (2000) 313–418, [hep-ph/0006124].Google Scholar
[311] Fakirov, D. and Stech, B., F and D decays , Nucl. Phys. B133 (1978) 315326.Google Scholar
[312] Bjorken, J. D., Topics in B physics, Nucl. Phys. Proc. Suppl. 11 (1989) 325341.Google Scholar
[313] Politzer, H. D. and Wise, M. B., Perturbative corrections to factorization in decay, Phys. Lett. B257 (1991) 399402.Google Scholar
[314] Bauer, C. W., Fleming, S., Pirjol, D., and Stewart, I. W., An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001) 114020, [hep-ph/0011336].Google Scholar
[315] Bauer, C. W., Pirjol, D., and Stewart, I. W., Soft collinear factorization in effective field theory, Phys. Rev. D65 (2002) 054022, [hep-ph/0109045].Google Scholar
[316] Bauer, C. W., Pirjol, D., and Stewart, I. W., A proof of factorization for B , Phys. Rev. Lett. 87 (2001) 201806, [hep-ph/0107002].Google Scholar
[317] Beneke, M., Soft-collinear factorization in B decays, Nucl. Part. Phys. Proc. 261–262 (2015) 311337, [arXiv:1501.07374].Google Scholar
[318] Fleischer, R., Flavour physics and CP violation: Expecting the LHC, in High-Energy Physics. Proceedings, 4th Latin American CERN-CLAF School, Vina del Mar, Chile, February 18–March 3, 2007, pp. 105–157, 2008. arXiv:0802.2882.Google Scholar
[319] Bartsch, M., Buchalla, G., and Kraus, C., BV L V L decays at next-to-leading order in QCD, arXiv:0810.0249.Google Scholar
[320] Bell, G., Beneke, M., Huber, T., and Li, X.-Q., Two-loop current–current operator contribution to the nonleptonic QCD penguin amplitude, Phys. Lett. B750 (2015) 348355, [arXiv:1507.03700].Google Scholar
[321] Alte, S., König, M., and Neubert, M., Effective field theory after a new-physics discovery, JHEP 08 (2018) 095, [arXiv:1806.01278].Google Scholar
[322] Alte, S., K, M.önig, and M. Neubert, Effective theory for a heavy scalar coupled to the SM via vector-like quarks, Eur. Phys. J. C79 (2019), no. 4 352, [arXiv:1902.04593].Google Scholar
[323] Keum, Y. Y., Li, H.-N., and Sanda, A. I., Penguin enhancement and B decays in perturbative QCD, Phys. Rev. D63 (2001) 054008, [hep-ph/0004173].Google Scholar
[324] Lu, C.-D., Ukai, K., and Yang, M.-Z., Branching ratio and CP violation of B —> pi pi decays in perturbative QCD approach, Phys. Rev. D63 (2001) 074009, [hep-ph/0004213].Google Scholar
[325] Li, H.-n., QCD aspects of exclusive B meson decays, Prog. Part. Nucl. Phys. 51 (2003) 85–171, [hep-ph/0303116].Google Scholar
[326] Yan, D.-C., Liu, X., and Xiao, Z.-J., Anatomy of B s PP decays and effects of the next-to-leading contributions in the perturbative QCD approach, arXiv:1906.01442.Google Scholar
[327] Isgur, N. and Wise, M. B., Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B232 (1989) 113117.Google Scholar
[328] Isgur, N. and Wise, M. B., Weak transition form-factors between heavy mesons, Phys. Lett. B237 (1990) 527530.Google Scholar
[329] Grinstein, B., The static quark effective theory, Nucl. Phys. B339 (1990) 253268.Google Scholar
[330] Falk, A. F., Georgi, H., Grinstein, B., and Wise, M. B., Heavy meson form-factors from QCD, Nucl. Phys. B343 (1990) 113.Google Scholar
[331] Georgi, H., An effective field theory for heavy quarks at low-energies, Phys. Lett. B240 (1990) 447450.Google Scholar
[332] Isgur, N. and Wise, M. B., Heavy quark symmetry, Adv. Ser. Direct. High Energy Phys. 10 (1992) 234285.Google Scholar
[333] Mannel, T., Roberts, W., and Ryzak, Z., A derivation of the heavy quark effective Lagrangian from QCD, Nucl. Phys. B368 (1992) 204217.Google Scholar
[334] Neubert, M., Heavy quark symmetry, Phys. Rept. 245 (1994) 259–396, [hep-ph/9306320].Google Scholar
[335] Manohar, A. V. and Wise, M. B., Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1191.Google Scholar
[336] Khoze, V. A. and Shifman, M. A., Heavy quarks, Sov. Phys. Usp. 26 (1983) 387.Google Scholar
[337] Shifman, M. A. and B, M.. Voloshin, Preasymptotic effects in inclusive weak decays of charmed particles, Sov. J. Nucl. Phys. 41 (1985) 120. [Yad. Fiz.41,187(1985)].Google Scholar
[338] Bigi, I. I. Y. and Uraltsev, N. G., Gluonic enhancements in non-spectator beauty decays: An inclusive mirage though an exclusive possibility, Phys. Lett. B280 (1992) 271280.Google Scholar
[339] Blok, B. and A, M.. Shifman, The rule of discarding 1/N in inclusive weak decays. 1., Nucl. Phys. B399 (1993) 441–458, [hep-ph/9207236].Google Scholar
[340] Bigi, I. I. Y., G, N.. Uraltsev, and A. I. Vainshtein, Nonperturbative corrections to inclusive beauty and charm decays: QCD versus phenomenological models, Phys. Lett. B293 (1992) 430–436, [hep-ph/9207214]. [Erratum: Phys. Lett.B297,477(1992)].Google Scholar
[341] Blok, B. and A, M.. Shifman, The rule of discarding 1/N in inclusive weak decays. 2., Nucl. Phys. B399 (1993) 459–476, [hep-ph/9209289].Google Scholar
[342] Bigi, I. I. Y., Blok, B., Shifman, M. A., and Vainshtein, A. I., The baffling semileptonic branching ratio of B mesons, Phys. Lett. B323 (1994) 408–416, [hep-ph/9311339].Google Scholar
[343] Bigi, I. I. Y., Khoze, V. A., Uraltsev, N. G., and Sanda, A. I., The question of CP noninvariance – as seen through the eyes of neutral beauty, Adv. Ser. Direct. High Energy Phys. 3 (1989) 175248.Google Scholar
[344] Bigi, I. I. Y., A. Shifman, M., and Uraltsev, N., Aspects of heavy quark theory, Ann. Rev. Nucl. Part. Sci. 47 (1997) 591–661, [hep-ph/9703290].Google Scholar
[345] Lenz, A., Lifetimes and heavy quark expansion, Int. J. Mod. Phys. A30 (2015), no. 10 1543005, [arXiv:1405.3601]. [,63(2014)].Google Scholar
[346] Artuso, M., Borissov, G., and Lenz, A., CP violation in the B 0 s system, Rev. Mod. Phys. 88 (2016), no. 4 045002, [arXiv:1511.09466].Google Scholar
[347] Ellis, J. R., Gaillard, M. K., Nanopoulos, D. V., and Rudaz, S., The phenomenology of the next left-handed quarks, Nucl. Phys. B131 (1977) 285. [Erratum: Nucl. Phys.B132,541(1978)].Google Scholar
[348] Hagelin, J. S., Mass mixing and CP violation in the B 0 0 system, Nucl. Phys. B193 (1981) 123149.Google Scholar
[349] Franco, E., Lusignoli, M., and Pugliese, A., Strong interaction corrections to CP violation in B 0 0 mixing, Nucl. Phys. B194 (1982) 403.Google Scholar
[350] Chau, L.-L., Quark mixing in weak interactions, Phys. Rept. 95 (1983) 194.Google Scholar
[351] Buras, A. J., Slominski, W., and Steger, H., B 0 0 mixing, CP violation and the B meson decay, Nucl. Phys. B245 (1984) 369398.Google Scholar
[352] Khoze, V. A., Shifman, M. A., Uraltsev, N. G., and Voloshin, M. B., On inclusive hadronic widths of beautiful particles, Sov. J. Nucl. Phys. 46 (1987) 112. [Yad. Fiz.46,181(1987)].Google Scholar
[353] Beneke, M., Buchalla, G., Greub, C., Lenz, A., and Nierste, U., Next-to-leading order QCD corrections to the lifetime difference of B d,s mesons, Phys. Lett. B459 (1999) 631–640, [hep-ph/9808385].Google Scholar
[354] Beneke, M., Buchalla, G., and Dunietz, I., Width difference in the B s B̅ s system, Phys. Rev. D54 (1996) 4419–4431, [hep-ph/9605259]. [Erratum: Phys. Rev.D83,119902(2011)].Google Scholar
[355] Chay, J., Georgi, H., and Grinstein, B., Lepton energy distributions in heavy meson decays from QCD, Phys. Lett. B247 (1990) 399405.Google Scholar
[356] Bjorken, J. D., Dunietz, I., and Taron, J., Inclusive semileptonic decays of bottom baryons and mesons into charmed and uncharmed final states: The case of infinitely heavy b and c quarks, Nucl. Phys. B371 (1992) 111140.Google Scholar
[357] Bigi, I. I. Y., Shifman, M. A., Uraltsev, N. G., and Vainshtein, A. I., QCD predictions for lepton spectra in inclusive heavy flavor decays, Phys. Rev. Lett. 71 (1993) 496–499, [hep-ph/9304225]. [,201(1993)].Google Scholar
[358] Manohar, A. V. and B, M.. Wise, Inclusive semileptonic B and polarized lambda(b) decays from QCD, Phys. Rev. D49 (1994) 1310–1329, [hep-ph/9308246].Google Scholar
[359] Blok, B., Koyrakh, L., Shifman, M. A., and Vainshtein, A. I., Differential distributions in semileptonic decays of the heavy flavors in QCD, Phys. Rev. D49 (1994) 3356, [hep-ph/9307247]. [Erratum: Phys. Rev.D50,3572(1994)].Google Scholar
[360] Falk, A. F., Luke, M. E., and Savage, M. J., Nonperturbative contributions to the inclusive rare decays BX s γ and BX s l + l , Phys. Rev. D49 (1994) 3367–3378, [hep-ph/9308288].Google Scholar
[361] Mannel, T., Operator product expansion for inclusive semileptonic decays in heavy quark effective field theory, Nucl. Phys. B413 (1994) 396–412, [hep-ph/9308262].Google Scholar
[362] Gasser, J. and Leutwyler, H., Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B250 (1985) 465516.Google Scholar
[363] Ecker, G., Gasser, J., Pich, A., and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B321 (1989) 311342.Google Scholar
[364] Ecker, G., Chiral perturbation theory, Prog. Part. Nucl. Phys. 35 (1995) 1–80, [hep-ph/9501357].Google Scholar
[365] Pich, A., Chiral perturbation theory, Rept. Prog. Phys. 58 (1995) 563–610, [hep-ph/9502366].Google Scholar
[366] Colangelo, P. and Khodjamirian, A., QCD sum rules, a modern perspective, hep-ph/0010175.Google Scholar
[367] Ali, A., Braun, V. M., and Simma, H., Exclusive radiative B decays in the light cone QCD sum rule approach, Z. Phys. C63 (1994) 437–454, [hep-ph/9401277].Google Scholar
[368] Ball, P. and Zwicky, R., New results on Bπ, K, η decay formfactors from light-cone sum rules, Phys. Rev. D71 (2005) 014015, [hep-ph/0406232].Google Scholar
[369] Khodjamirian, A., Mannel, T., and Offen, N., Form-factors from light-cone sum rules with B-meson distribution amplitudes, Phys. Rev. D75 (2007) 054013, [hep-ph/0611193].Google Scholar
[370] Weisskopf, V. and Wigner, E. P., Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory, Z. Phys. 63 (1930) 5473.Google Scholar
[371] Weisskopf, V. and Wigner, E., Over the natural line width in the radiation of the harmonius oscillator, Z. Phys. 65 (1930) 1829.Google Scholar
[372] N. Christ, H., Feng, X., Martinelli, G., and Sachrajda, C. T., Effects of finite volume on the K L -K S mass difference, Phys. Rev. D91 (2015), no. 11 114510, [arXiv:1504.01170].Google Scholar
[373] Bai, Z., Christ, N. H., and Sachrajda, C. T., The K L K S mass difference, EPJ Web Conf. 175 (2018) 13017.Google Scholar
[374] Particle Data Group Collaboration, Patrignani , C.et al., Review of particle physics, Chin. Phys. C40 (2016 and 2017 update), no. 10 100001.Google Scholar
[375] Gasser, J. and Meissner, U. G., On the phase of ε, Phys. Lett. B258 (1991) 219224.Google Scholar
[376] Buras, A. J. and Guadagnoli, D., Correlations among new CP violating effects in ΔF = 2 observables, Phys. Rev. D78 (2008) 033005, [arXiv:0805.3887].Google Scholar
[377] Buras, A. J., Guadagnoli, D., and Isidori, G., On ɛ K beyond lowest order in the operator product expansion, Phys. Lett. B688 (2010) 309313, [arXiv:1002.3612].Google Scholar
[378] Buras, A. J. and Fleischer, R., Quark mixing, CP violation and rare decays after the top quark discovery, Adv. Ser. Direct. High Energy Phys. 15 (1998) 65–238, [hep-ph/9704376].Google Scholar
[379] Ball, P. et al., B decays at the LHC, in 1999 CERN Workshop on Standard Model Physics (and More) at the LHC, CERN, Geneva, Switzerland, 25–26 May: Proceedings, 2000. hep-ph/0003238.Google Scholar
[380] Anikeev, K. et al., B physics at the Tevatron: Run II and beyond, in Workshop on B Physics at the Tevatron: Run II and Beyond, Batavia, Illinois, September 23–25, 1999, 2001. hep-ph/0201071.Google Scholar
[381] Fleischer, R., CP violation in the B system and relations to Kπν v̅ decays, Phys. Rept. 370 (2002) 537–680, [hep-ph/0207108].Google Scholar
[382] Nierste, U., Three lectures on meson mixing and CKM phenomenology, in Heavy Quark Physics. Proceedings, Helmholtz International School, HQP08, Dubna, Russia, August 11–21, 2008, pp. 1–38, 2009. arXiv:0904.1869.Google Scholar
[383] LHCb Collaboration, Aaij, R. et al., Implications of LHCb measurements and future prospects, EPJ C 73 (2013) 2373, [arXiv:1208.3355].Google Scholar
[384] Borissov, G., Fleischer, R., and Schune, M.-H., Rare decays and CP violation in the B s system, Ann. Rev. Nucl. Part. Sci. 63 (2013) 205235, [arXiv:1303.5575].Google Scholar
[385] Esen, S. and Lenz, A., CKM 2018 summary of Working Group 4: Mixing and mixing-related CP violation in the B system ΔM, ΔΓ, ϕ s , ϕ 1 /β, ϕ 2 /α, ϕ 3 /γ, 2019. arXiv:1901.05000.Google Scholar
[386] Dunietz, I., Fleischer, R., and Nierste, U., In pursuit of new physics with B s decays, Phys. Rev. D63 (2001) 114015, [hep-ph/0012219].Google Scholar
[387] Jubb, T., Kirk, M., Lenz, A., and Tetlalmatzi-Xolocotzi, G., On the ultimate precision of meson mixing observables, Nucl. Phys. B915 (2017) 431453, [arXiv:1603.07770].Google Scholar
[388] Blanke, M. and J, A.. Buras, Universal unitarity triangle 2016 and the tension between ΔM s,d and ε K in CMFV models, Eur. Phys. J. C76 (2016), no. 4, 197, [arXiv:1602.04020].Google Scholar
[389] Asatrian, H. M., Hovhannisyan, A., Nierste, U., and Yeghiazaryan, A., Towards next-to-next-to-leading-log accuracy for the width difference in the B s s System: Fermionic contributions to order (m c /m b )0 and (m c /m b )1 , JHEP 10 (2017) 191, [arXiv:1709.02160].Google Scholar
[390] Lenz, A., Theory of mixing and CP violation, PoS LHCP2018 (2018) 174, [arXiv:1809.09452].Google Scholar
[391] Hagelin, J. S., Weak mass mixing, CP violation, and the decay of naked bottom, Phys. Rev. D20 (1979) 2893.Google Scholar
[392] Lenz, A. and Nierste, U., Theoretical update of B s s mixing, JHEP 06 (2007) 072, [hep-ph/0612167].Google Scholar
[393] Bobeth, C., Haisch, U., Lenz, A., Pecjak, B., and Tetlalmatzi-Xolocotzi, G., On new physics in ΔΓ d , JHEP 1406 (2014) 040, [arXiv:1404.2531].Google Scholar
[394] Dunietz, I., B s s mixing, CP violation and extraction of CKM phases from untagged B s data samples, Phys. Rev. D52 (1995) 3048–3064, [hep-ph/9501287].Google Scholar
[395] Dighe, A. S., Dunietz, I., Lipkin, H. J., and Rosner, J. L., Angular distributions and lifetime differences in B s J/ψϕ decays, Phys. Lett. B369 (1996) 144–150, [hep-ph/9511363].Google Scholar
[396] Goto, T., Kitazawa, N., Okada, Y., and Tanaka, M., Model independent analysis of B mixing and CP violation in B decays, Phys. Rev. D53 (1996) 6662–6665, [hep-ph/9506311].Google Scholar
[397] UTfit Collaboration, Bona , M.et al., The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: A reappraisal after the measurements of ΔM s and B(Bτν τ ), JHEP 0610 (2006) 081, [hep-ph/0606167]. Updates on www.utfit.org.Google Scholar
[398] Charles, J. et al., Current status of the standard model CKM fit and constraints on ΔF = 2 new physics, Phys. Rev. D91 (2015) 073007, [arXiv:1501.05013]. Updates on ckmfitter.in2p3.fr.Google Scholar
[399] Di, M. Carlo, Giusti, D., Lubicz, V., Martinelli, G., T, C.. Sachrajda, Sanfilippo, F., Simula, S., and Tantalo, N., Light-meson leptonic decay rates in lattice QCD+QED, arXiv:1904.08731.Google Scholar
[400] Ciuchini, M., Pierini, M., and Silvestrini, L., The effect of penguins in the B d J/ψK 0 CP asymmetry, Phys. Rev. Lett. 95 (2005) 221804, [hep-ph/0507290].Google Scholar
[401] Faller, S., Jung, M., Fleischer, R., and Mannel, T., The golden modes B 0J/ψK S,L in the era of precision flavour physics, Phys. Rev. D79 (2009) 014030, [arXiv:0809.0842].Google Scholar
[402] Ciuchini, M., Pierini, M., and Silvestrini, L., Theoretical uncertainty in sin 2β: An update, in CKM Unitarity Triangle. Proceedings, 6th International Workshop, CKM 2010, Warwick, UK, September 6–10, 2010, 2011. arXiv:1102.0392.Google Scholar
[403] Jung, M., Determining weak phases from BJ/ψP decays, Phys. Rev. D86 (2012) 053008, [arXiv:1206.2050].Google Scholar
[404] K. De Bruyn, and Fleischer, R., A roadmap to control penguin effects in B 0 d J/ψK 0 S and B 0 s J/ψϕ , JHEP 03 (2015) 145, [arXiv:1412.6834].Google Scholar
[405] Beneke, M., Corrections to sin(2β) from CP asymmetries in B 0 → (π 0, ρ 0, η, η ′ , ω, ϕ)K S decays, Phys. Lett. B620 (2005) 143–150, [hep-ph/0505075].Google Scholar
[406] Gambino, P., Healey, K. J., and Turczyk, S., Taming the higher power corrections in semileptonic B decays, Phys. Lett. B763 (2016) 6065, [arXiv:1606.06174].Google Scholar
[407] LHCb Collaboration, M. W. Kenzie, and M. P. Whitehead, Update of the LHCb combination of the CKM angle γ, Tech. Rep. LHCb-CONF-2018-002. CERN-LHCb-CONF-2018-002, CERN, Geneva, May, 2018.Google Scholar
[408] Lunghi, E. and Soni, A., Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B666 (2008) 162165, [arXiv:0803.4340].Google Scholar
[409] Fleischer, R., Flavor physics and CP violation, in high-energy physics. Proceedings, European School, Tsakhkadzor, Armenia, August 24–September 6, 2003, pp. 81–150, 2004. hep-ph/0405091.Google Scholar
[410] LHCb Collaboration, R. Aaij, et al., Measurement of the CP-violating phase ϕ s from B 0 s J/ψπ + π decays in 13 TeV pp Collisions, arXiv:1903.05530.Google Scholar
[411] LHCb Collaboration, R. Aaij et al., Updated measurement of time-dependent CP-violating observables in B 0 s J/ψK + K decays, arXiv:1906.08356.Google Scholar
[412] Beneke, M. and Neubert, M., QCD factorization for BPP and BPV decays, Nucl. Phys. B675 (2003) 333–415, [hep-ph/0308039].Google Scholar
[413] Bobeth, C., Gorbahn, M., and Vickers, S., Weak annihilation and New Physics in Charmless BMM Decays, Eur. Phys. J. C75 (2015), no. 7 340, [arXiv:1409.3252].Google Scholar
[414] Gronau, M. and London, D., Isospin analysis of CP asymmetries in B decays, Phys. Rev. Lett. 65 (1990) 33813384.Google Scholar
[415] Lipkin, H. J., Nir, Y., Quinn, H. R., and Snyder, A., Penguin trapping with isospin analysis and CP asymmetries in B decays, Phys. Rev. D44 (1991) 14541460.Google Scholar
[416] Snyder, A. E. and Quinn, H. R., Measuring CP asymmetry in Bρπ decays without ambiguities, Phys. Rev. D48 (1993) 21392144.Google Scholar
[417] Buchalla, G. and S, A.. Safir, CP violation in Bπ + π and the unitarity triangle, Eur. Phys. J. C45 (2006) 109–120, [hep-ph/0406016].Google Scholar
[418] Gronau, M. and Zupan, J., Isospin-breaking effects on α extracted in Bππ, ρρ, ρπ , Phys. Rev. D71 (2005) 074017, [hep-ph/0502139].Google Scholar
[419] Charles, J., Deschamps, O., Descotes-Genon, S., and Niess, V., Isospin analysis of charmless B-meson decays, Eur. Phys. J. C77 (2017), no. 8 574, [arXiv:1705.02981].Google Scholar
[420] Dunietz, I., Clean CKM information from B d (t) → D (∗)∓ π ± , Phys. Lett. B427 (1998) 179–182, [hep-ph/9712401].Google Scholar
[421] Aleksan, R., Dunietz, I., and Kayser, B., Determining the CP violating phase gamma, Z. Phys. C54 (1992) 653660.Google Scholar
[422] Gronau, M. and Wyler, D., On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B265 (1991) 172176.Google Scholar
[423] Gronau, M. and London, D., How to determine all the angles of the unitarity triangle from B 0 d DK S and B 0 s D 0 , Phys. Lett. B253 (1991) 483488.Google Scholar
[424] Atwood, D., Dunietz, I., and Soni, A., Enhanced CP violation with BKD 0 ̅D 0 modes and extraction of the CKM angle γ , Phys. Rev. Lett. 78 (1997) 3257–3260, [hep-ph/9612433].Google Scholar
[425] Giri, A., Grossman, Y., Soffer, A., and Zupan, J., Determining gamma using B ±DK ± with multibody d decays, Phys. Rev. D68 (2003) 054018, [hep-ph/0303187].Google Scholar
[426] Vos, K. K., Sevior, M., and Perazzini, S., Progress and challenges in the study of direct CP violation and γ determinations: Summary of CKM 2018 Working Group V, in 24th International Baldin Seminar on High Energy Physics Problems: Relativistic Nuclear Physics and Quantum Chromodynamics (ISHEPP 2018) Dubna, Russia, September 17–22, 2018, 2019. arXiv:1901.03604.Google Scholar
[427] Brod, J. and Zupan, J., The ultimate theoretical error on γ from BDK decays, JHEP 1401 (2014) 051, [arXiv:1308.5663].Google Scholar
[428] Belle II Collaboration, E. Kou et al., The Belle II physics book, arXiv:1808.10567.Google Scholar
[429] Rout, N., Measurement of CKM angle ϕ3 at Belle II, arXiv:1906.11792.Google Scholar
[430] LHCb Collaboration, R. Aaij et al., Measurement of the CKM angle γ using B ±DK ± with DK S 0 π + π , K S 0 K + K decays, JHEP 08 (2018) 176, [arXiv:1806.01202].Google Scholar
[431] Dunietz, I., CP violation with self-tagging B d modes, Phys. Lett. B270 (1991) 7580.Google Scholar
[432] Fleischer, R., New, efficient and clean strategies to explore CP violation through neutral B decays, Phys. Lett. B562 (2003) 234–244, [hep-ph/0301255].Google Scholar
[433] Fleischer, R. and Wyler, D., Exploring CP violation with B c decays, Phys. Rev. D62 (2000) 057503, [hep-ph/0004010].Google Scholar
[434] Fleischer, R., New strategies to extract β and γ from B d π + π and B s K + K , Phys. Lett. B459 (1999) 306–320, [hep-ph/9903456].Google Scholar
[435] Fleischer, R., Extracting γ from B(s/d) → J/ψK S and B(d/s) → D + (d/s)D (d/s), Eur. Phys. J. C10 (1999) 299–306, [hep-ph/9903455].Google Scholar
[436] Gronau, M. and L, J.. Rosner, The role of B s in determining the weak phase γ , Phys. Lett. B482 (2000) 71–76, [hep-ph/0003119].Google Scholar
[437] Gronau, M., U spin symmetry in charmless B decays, Phys. Lett. B492 (2000) 297–302, [hep-ph /0008292].Google Scholar
[438] LHCb Collaboration, R. Aaij et al., Determination of γ and 2β s from charmless two-body decays of beauty mesons, Phys. Lett. B741 (2015) 1–11, [arXiv:1408.4368].Google Scholar
[439] Fleischer, R., Jaarsma, R., and Vos, K. K., New strategy to explore CP violation with B 0 s K K + , Phys. Rev. D94 (2016), no. 11 113014, [arXiv:1608.00901].Google Scholar
[440] Fleischer, R., Jaarsma, R., and Vos, K. K., Towards new frontiers in the exploration of charmless nonleptonic B decays, JHEP 03 (2017) 055, [arXiv:1612.07342].Google Scholar
[441] Buras, A. J., Fleischer, R., Recksiegel, S., and Schwab, F., The BπK puzzle and its relation to rare B and K decays, Eur. Phys. J. C32 (2003) 45–54, [hep-ph/0309012].Google Scholar
[442] Buras, A. J., Fleischer, R., Recksiegel, S., and Schwab, F., Bππ, new physics in BπK and implications for rare K and B decays, Phys. Rev. Lett. 92 (2004) 101804, [hep-ph/0312259].Google Scholar
[443] Buras, A. J., Fleischer, R., Recksiegel, S., and Schwab, F., Anatomy of prominent B and K decays and signatures of CP-violating new physics in the electroweak penguin sector, Nucl. Phys. B697 (2004) 133– 206, [hep-ph/0402112].Google Scholar
[444] Buras, A. J., Fleischer, R., Recksiegel, S., and Schwab, F., The Bππ, πK puzzles in the light of new data: Implications for the standard model, new physics and rare decays, Acta Phys. Polon. B36 (2005) 2015–2050, [hep-ph/0410407].Google Scholar
[445] Baek, S., Hamel, P., London, D., Datta, A., and Suprun, D. A., The BπK puzzle and new physics, Phys. Rev. D71 (2005) 057502, [hep-ph/0412086].Google Scholar
[446] Baek, S. and London, D., Is there still a BπK puzzle? Phys. Lett. B653 (2007) 249–253, [hep-ph/0701181].Google Scholar
[447] Baek, S., Chiang, C.-W., and London, D., The BπK puzzle: 2009 update, Phys. Lett. B675 (2009) 5963, [arXiv:0903.3086].Google Scholar
[448] Beaudry, N. B., Datta, A., London, D., Rashed, A., and Roux, J.-S., The BπK puzzle revisited, JHEP 01 (2018) 074, [arXiv:1709.07142].Google Scholar
[449] Fleischer, R. and Mannel, T., Constraining the CKM angle γ and penguin contributions through combined BπK branching ratios, Phys. Rev. D57 (1998) 2752–2759, [hep-ph/9704423].Google Scholar
[450] Gronau, M. and L, J.. Rosner, Weak phase γ from ratio of BπK rates, Phys. Rev. D57 (1998) 6843– 6850, [hep-ph/9711246].Google Scholar
[451] Gronau, M., L, J.. Rosner, and D. London, Weak coupling phase from decays of charged B mesons to πK and ππ, Phys. Rev. Lett. 73 (1994) 21–24, [hep-ph/9404282].Google Scholar
[452] Fleischer, R., Rescattering and electroweak penguin effects in strategies to constrain and determine the CKM angle γ from BπK decays, Eur. Phys. J. C6 (1999) 451–470, [hep-ph/9802433].Google Scholar
[453] Buras, A. J. and Fleischer, R., A general analysis of γ determinations from BπK decays, Eur. Phys. J. C11 (1999) 93–109, [hep-ph/9810260].Google Scholar
[454] Neubert, M., Model independent analysis of BπK decays and bounds on the weak phase gamma, JHEP 02 (1999) 014, [hep-ph/9812396].Google Scholar
[455] Neubert, M. and L, J.. Rosner, Determination of the weak phase gamma from rate measurements in B +πK, ππ decays, Phys. Rev. Lett. 81 (1998) 5076–5079, [hep-ph/9809311].Google Scholar
[456] Neubert, M. and Rosner, J. L., New bound on γ from B +πK decays, Phys. Lett. B441 (1998) 403–409, [hep-ph/9808493].Google Scholar
[457] Ciuchini, M., Franco, E., Martinelli, G., and Silvestrini, L., Charming penguins in B decays, Nucl. Phys. B501 (1997) 271–296, [hep-ph/9703353].Google Scholar
[458] Buras, A. J. and Silvestrini, L., Nonleptonic two-body B decays beyond factorization, Nucl. Phys. B569 (2000) 3–52, [hep-ph/9812392].Google Scholar
[459] Ciuchini, M., Contino, R., Franco, E., Martinelli, G., and Silvestrini, L., Charming penguin enhanced B decays, Nucl. Phys. B512 (1998) 3–18, [hep-ph/9708222]. [Erratum: Nucl. Phys.B531,656(1998)].Google Scholar
[460] Ciuchini, M., Franco, E., Martinelli, G., Pierini, M., and Silvestrini, L., Charming penguins strike back, Phys. Lett. B515 (2001) 33–41, [hep-ph/0104126].Google Scholar
[461] Fleischer, R., Jaarsma, R., Malami, E., and Vos, K. K., Exploring Bππ, πK decays at the high-precision frontier, Eur. Phys. J. C78 (2018), no. 11 943, [arXiv:1806.08783].Google Scholar
[462] BaBar Collaboration, J. P. Lees et al., Measurement of CP asymmetries and branching fractions in charmless two-body B-meson decays to pions and kaons, Phys. Rev. D87 (2013), no. 5 052009, [arXiv:1206.3525].Google Scholar
[463] Belle Collaboration, Julius, T. et al., Measurement of the branching fraction and CP asymmetry in B 0π 0 π 0 decays, and an improved constraint on ϕ 2 , Phys. Rev. D96 (2017), no. 3 032007, [arXiv:1705.02083].Google Scholar
[464] Fleischer, R., Recksiegel, S., and Schwab, F., On Puzzles and non-puzzles in Bππ, πK decays, Eur. Phys. J. C51 (2007) 55–61, [hep-ph/0702275].Google Scholar
[465] Datta, A., Sachdeva, D., and Waite, J., A unified explanation of b + μ anomalies, neutrino masses and BπK puzzle, arXiv:1905.04046.Google Scholar
[466] Kruger, F., Sehgal, L. M., Sinha, N., and Sinha, R., Angular distribution and CP asymmetries in the decays K π + e e + and π pi + e e + , Phys. Rev. D61 (2000) 114028, [hep-ph/9907386]. [Erratum: Phys. Rev.D63,019901(2001)].Google Scholar
[467] Blake, T., Lanfranchi, G., and Straub, D. M., Rare B decays as tests of the standard model, Prog. Part. Nucl. Phys. 92 (2017) 5091, [arXiv:1606.00916].Google Scholar
[468] Altmannshofer, W., Ball, P., Bharucha, A., Buras, A. J., Straub, D. M., et al., Symmetries and asymmetries of BK μ + μ decays in the standard model and beyond, JHEP 0901 (2009) 019, [arXiv:0811.1214].Google Scholar
[469] Ball, P. and Zwicky, R., B(D, S) → ρ, ω, K , ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D71 (2005) 014029, [hep-ph/0412079].Google Scholar
[470] Khodjamirian, A., Mannel, T., Pivovarov, A., and Wang, Y.-M., Charm-loop effect in BK (∗) + and BK γ , JHEP 1009 (2010) 089, [arXiv:1006.4945].Google Scholar
[471] Bobeth, C., Misiak, M., and Urban, J., Photonic penguins at two loops and m t -dependence of BR(BX s + ), Nucl. Phys. B574 (2000) 291–330, [hep-ph/9910220].Google Scholar
[472] Bobeth, C., Buras, A. J., Kruger, F., and Urban, J., QCD corrections to ̅bx d,s ν v̅, ̅b d,s + , kπν v̅ and k l μ + μ in the MSSM, Nucl. Phys. B630 (2002) 87–131, [hep-ph/0112305].Google Scholar
[473] Paul, A. and Straub, D. M., Constraints on new physics from radiative B decays, JHEP 04 (2017) 027, [arXiv:1608.02556].Google Scholar
[474] Beneke, M. and Feldmann, T., Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B592 (2001) 3–34, [hep-ph/0008255].Google Scholar
[475] Beneke, M., Feldmann, T., and Seidel, D., Systematic approach to exclusive BVl + l , V γ decays, Nucl. Phys. B612 (2001) 25–58, [hep-ph/0106067].Google Scholar
[476] Beneke, M., Feldmann, T., and Seidel, D., Exclusive radiative and electroweak bd and bs penguin decays at NLO, Eur. Phys. J. C41 (2005) 173–188, [hep-ph/0412400].Google Scholar
[477] Grinstein, B. and Pirjol, D., Factorization in BKπℓ + decays, Phys. Rev. D73 (2006) 094027, [hep-ph/0505155].Google Scholar
[478] C. Kim, S., Kim, Y. G., Lu, C.-D., and Morozumi, T., Azimuthal angle distribution in BK (→ ) + at low invariant m( + ) region, Phys. Rev. D62 (2000) 034013, [hep-ph/0001151].Google Scholar
[479] Bobeth, C., Hiller, G., and Piranishvili, G., CP Asymmetries in bar B (→ K̅π) ̅ℓℓ and untagged s , B s ϕ(→ K + K ) ̅ℓℓ decays at NLO, JHEP 0807 (2008) 106, [arXiv:0805.2525].Google Scholar
[480] Kruger, F. and Matias, J., Probing new physics via the transverse amplitudes of B 0K ∗0 (K π +)l + l at large recoil, Phys. Rev. D71 (2005) 094009, [hep-ph/0502060].Google Scholar
[481] Buchalla, G., Hiller, G., and Isidori, G., Phenomenology of non-standard Z couplings in exclusive semileptonic bs transitions, Phys. Rev. D63 (2001) 014015, [hep-ph/0006136].Google Scholar
[482] Egede, U., Hurth, T., Matias, J., Ramon, M., and Reece, W., New observables in the decay mode d ∗0 l + l , JHEP 0811 (2008) 032, [arXiv:0807.2589].Google Scholar
[483] Descotes-Genon, S., Hurth, T., Matias, J., and Virto, J., Optimizing the basis of BK + observables in the full kinematic range, JHEP 1305 (2013) 137, [arXiv:1303.5794].Google Scholar
[484] Aebischer, J., Kumar, J., Stangl, P., and Straub, D. M., A global likelihood for precision constraints and flavour anomalies, arXiv:1810.07698.Google Scholar
[485] Bharucha, A., Straub, D. M., and Zwicky, R., BVℓ + in the standard model from light-cone sum rules, JHEP 08 (2016) 098, [arXiv:1503.05534].Google Scholar
[486] Descotes-Genon, S., Hofer, L., Matias, J., and Virto, J., Global analysis of bsℓℓ anomalies , JHEP 06 (2016) 092, [arXiv:1510.04239].Google Scholar
[487] Bobeth, C., Hiller, G., and Piranishvili, G., Angular distributions of Kℓ + decays, JHEP 12 (2007) 040, [arXiv:0709.4174].Google Scholar
[488] Bobeth, C., Ewerth, T., Kruger, F., and Urban, J., Analysis of neutral Higgs boson contributions to the decays s + and Kℓ + , Phys. Rev. D64 (2001) 074014, [hep-ph/0104284].Google Scholar
[489] Ali, A., Ball, P., Handoko, L. T., and Hiller, G., A comparative study of the decays B → (K, K ) + in standard model and supersymmetric theories, Phys. Rev. D61 (2000) 074024, [hep-ph/9910221].Google Scholar
[490] LHCb Collaboration, Aaij, R., et al., Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601, [arXiv:1406.6482].Google Scholar
[491] LHCb Collaboration, Aaij, R. et al., Test of lepton universality with B 0K ∗0 + decays, JHEP 08 (2017) 055, [arXiv:1705.05802].Google Scholar
[492] LHCb Collaboration, Aaij , R.et al., Search for lepton-universality violation in B +K + + decays, Phys. Rev. Lett. 122 (2019), no. 19 191801, [arXiv:1903.09252].Google Scholar
[493] Hiller, G. and Kruger, F., More model-independent analysis of bs processes, Phys. Rev. D69 (2004) 074020, [hep-ph/0310219].Google Scholar
[494] Capdevila, B., Crivellin, A., Descotes-Genon, S., Matias, J., and Virto, J., Patterns of new physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093, [arXiv:1704.05340].Google Scholar
[495] Capdevila, B., Descotes-Genon, S., Matias, J., and Virto, J., Assessing lepton-flavour non-universality from BK ℓℓ angular analyses, JHEP 10 (2016) 075, [arXiv:1605.03156].Google Scholar
[496] Bordone, M., Isidori, G., and Pattori, A., On the standard model predictions for R K and R K , Eur. Phys. J. C76 (2016), no. 8 440, [arXiv:1605.07633].Google Scholar
[497] Belle Collaboration, Abdesselam , A.et al., Test of lepton flavor universality in BK + decays at Belle, arXiv:1904.02440.Google Scholar
[498] LHCb Collaboration, Aaij , R.et al., Angular analysis of the B 0K ∗0 μ + μ decay using 3 fb−1 of integrated luminosity, JHEP 02 (2016) 104, [arXiv:1512.04442].Google Scholar
[499] Descotes-Genon, S., Hofer, L., Matias, J., and Virto, J., On the impact of power corrections in the prediction of BK μ + μ observables, JHEP 1412 (2014) 125, [arXiv:1407.8526].Google Scholar
[500] LHCb Collaboration, R. Aaij et al., Angular analysis and differential branching fraction of the decay B 0 s ϕμ + μ , JHEP 09 (2015) 179, [arXiv:1506.08777].Google Scholar
[501] CMS Collaboration, A. M. Sirunyan et al., Angular analysis of the decay √B+ → K+ μ + μ in proton-proton collisions at s = 8 TeV, Phys. Rev. D98 (2018), no. 11 112011, [arXiv:1806.00636].Google Scholar
[502] Dutta, R., Model independent analysis of new physics effects on B c → (D s , D s ) μ + μ decay observables, arXiv:1906.02412.Google Scholar
[503] Buras, A. J., Relations between ΔM s,d and B s,d μ + μ in models with minimal flavour violation, Phys. Lett. B566 (2003) 115–119, [hep-ph/0303060].Google Scholar
[504] Buras, A. J., F. De Fazio, J. Girrbach, R. Knegjens, , and Nagai, M., The anatomy of neutral scalars with FCNCs in the flavour precision era, JHEP 1306 (2013) 111, [arXiv:1303.3723].Google Scholar
[505] Altmannshofer, W., Niehoff, C., and Straub, D. M., B s μ + μ as current and future probe of new physics, JHEP 05 (2017) 076, [arXiv:1702.05498].Google Scholar
[506] Fleischer, R., Jaarsma, R., and Tetlalmatzi-Xolocotzi, G., In pursuit of new physics with B 0 s,d + , JHEP 05 (2017) 156, [arXiv:1703.10160].Google Scholar
[507] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, , et al., Probing new physics via the B 0 s μ + μ effective lifetime, Phys. Rev. Lett. 109 (2012) 041801, [arXiv:1204.1737].Google Scholar
[508] Fleischer, R., On branching ratios of B s decays and the search for new physics in B 0 s μ + μ , Nucl. Phys. Proc. Suppl. 241–242 (2013) 135140, [arXiv:1208.2843].Google Scholar
[509] Buras, A. J., Fleischer, R., Girrbach, J., and Knegjens, R., Probing new physics with the B s μ + μ time-dependent rate, JHEP 1307 (2013) 77, [arXiv:1303.3820].Google Scholar
[510] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, , et al., Branching ratio measurements of B s decays, Phys. Rev. D86 (2012) 014027, [arXiv:1204.1735].Google Scholar
[511] LHCb Collaboration, R. Aaij et al., Measurement of the B 0 s μ + μ branching fraction and effective lifetime and search for B 0μ + μ decays, Phys. Rev. Lett. 118 (2017), no. 19 191801, [arXiv:1703.05747].Google Scholar
[512] Descotes-Genon, S., Matias, J., and Virto, J., An analysis of B d,s mixing angles in presence of new physics and an update of B s K 0∗ 0∗ , Phys. Rev. D85 (2012) 034010, [arXiv:1111.4882].Google Scholar
[513] Fleischer, R., Espinosa, D. G., Jaarsma, R., and Tetlalmatzi-Xolocotzi, G., CP violation in leptonic rare B 0 s decays as a probe of new physics, Eur. Phys. J. C78 (2018), no. 1 1, [arXiv:1709.04735].Google Scholar
[514] Tetlalmatzi-Xolocotzi, G., Rare leptonic B decays, PoS BEAUTY2018 (2018) 043, [arXiv :1809.00637].Google Scholar
[515] Beneke, M., Bobeth, C., and Szafron, R., Enhanced electromagnetic correction to the rare B-meson decay B s,d μ + μ , Phys. Rev. Lett. 120 (2018), no. 1 011801, [arXiv:1708.09152].Google Scholar
[516] Aebischer, J., Altmannshofer, W., Guadagnoli, D., Reboud, M., Stangl, P., and D. M. Straub, B-decay discrepancies after Moriond 2019, arXiv:1903.10434.Google Scholar
[517] CMS Collaboration, S. Chatrchyan et al., Measurement of the B s μ + μ branching fraction and search for B d μ + μ with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804, [arXiv:1307.5025].Google Scholar
[518] LHCb, CMS Collaboration, V. Khachatryan et al., Observation of the rare B 0 s μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68–72, [arXiv:1411.4413].Google Scholar
[519] ATLAS Collaboration, M. Aaboud et al., Study of the rare decays of B 0 s and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098, [arXiv:1812.03017].Google Scholar
[520] Buras, A. J., Gambino, P., Gorbahn, M., Jäger, S., and Silvestrini, L., Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B500 (2001) 161–167, [hep-ph/0007085].Google Scholar
[521] Buras, A. J., Minimal flavor violation, Acta Phys. Polon. B34 (2003) 5615–5668, [hep-ph/0310208].Google Scholar
[522] RBC/UKQCD Collaboration, Boyle, P. A., Del, L. Debbio, Garron, N., Juttner, A., Soni, A., Tsang, J. T., and Witzel, O., SU(3)-breaking ratios for D (s) and B (s) mesons, arXiv:1812.08791.Google Scholar
[523] King, D., Lenz, A., and Rauh, T., B s mixing observables and —V t d /V t s — from sum rules, JHEP 05 (2019) 034, [arXiv:1904.00940].Google Scholar
[524] LHCb Collaboration, Aaij , R.et al., Search for the decays B 0 s τ + τ and B 0τ + τ , Phys. Rev. Lett. 118 (2017), no. 25 251802, [arXiv:1703.02508].Google Scholar
[525] BaBar Collaboration, B. Aubert et al., A search for B +τ + v with hadronic B tags, Phys. Rev. D77 (2008) 011107, [arXiv:0708.2260].Google Scholar
[526] Belle Collaboration, K. Ikado et al., Evidence of the purely leptonic decay B τ τ , Phys. Rev. Lett. 97 (2006) 251802, [hep-ex/0604018].Google Scholar
[527] Belle Collaboration, Adachi , I.et al., Measurement of B τ τ with a hadronic tagging method using the full data sample of Belle, Phys. Rev. Lett. 110 (2013) 131801, [arXiv:1208.4678].Google Scholar
[528] UTfit Collaboration, Bona , M.et al., An improved standard model prediction of BR(Bτν) and its implications for new physics, Phys. Lett. B687 (2010) 61–69, [arXiv:0908.3470].Google Scholar
[529] Altmannshofer, W., Buras, A. J., Gori, S., Paradisi, P., and Straub, D. M., Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B830 (2010) 1794, [arXiv:0909.1333].Google Scholar
[530] Banelli, G., Fleischer, R., Jaarsma, R., and Tetlalmatzi-Xolocotzi, G., Decoding (pseudo)-scalar operators in leptonic and semileptonic B decays, Eur. Phys. J. C78 (2018), no. 11 911, [arXiv:1809.09051].Google Scholar
[531] Belle Collaboration, Sibidanov , A.et al., Search for B μ μ decays at the Belle experiment, Phys. Rev. Lett. 121 (2018), no. 3 031801, [arXiv:1712.04123].Google Scholar
[532] Hou, W.-S., Kohda, M., Modak, T., and Wong, G.-G., Enhanced Bμ v̅ decay at tree level, arXiv:1903.03016.Google Scholar
[533] Körner, J. G. and Schuler, G. A., Exclusive semileptonic heavy meson decays including lepton mass effects, Z. Phys. C46 (1990) 93.Google Scholar
[534] Dassinger, B., Feger, R., and Mannel, T., Complete Michel parameter analysis of inclusive semileptonic bc transition, Phys. Rev. D79 (2009) 075015, [arXiv:0803.3561].Google Scholar
[535] Tanaka, M. and Watanabe, R., New physics in the weak Interaction of D (∗) τ v̅ , Phys. Rev. D87 (2013), no. 3 034028, [arXiv:1212.1878].Google Scholar
[536] Fajfer, S., Kamenik, J. F., and Nisandzic, I., On the D τ v̅ τ sensitivity to new physics, Phys. Rev. D85 (2012) 094025, [arXiv:1203.2654].Google Scholar
[537] Sakaki, Y., Tanaka, M., Tayduganov, A., and Watanabe, R., Testing leptoquark models in D (∗) τ v̅ , Phys. Rev. D88 (2013), no. 9 094012, [arXiv:1309.0301].Google Scholar
[538] Dorsner, I., Fajfer, S., Kosnik, N., and Nisandzic, I., Minimally flavored colored scalar in D (∗) τ v̅ and the mass matrices constraints, JHEP 11 (2013) 084, [arXiv:1306.6493].Google Scholar
[539] Duraisamy, M. and Datta, A., The Full D τ v̅ τ angular distribution and CP violating triple products, JHEP 09 (2013) 059, [arXiv:1302.7031].Google Scholar
[540] Duraisamy, M., Sharma, P., and Datta, A., Azimuthal BD τ v̅ τ angular distribution with tensor operators, Phys. Rev. D90 (2014), no. 7 074013, [arXiv:1405.3719].Google Scholar
[541] Freytsis, M., Ligeti, Z., and Ruderman, J. T., Flavor models for D (∗) τ v̅ , Phys. Rev. D92 (2015), no. 5 054018, [arXiv:1506.08896].Google Scholar
[542] Bhattacharya, S., Nandi, S., and Patra, S. K., Optimal-observable analysis of possible new physics in D (∗) τν τ , Phys. Rev. D93 (2016), no. 3 034011, [arXiv:1509.07259].Google Scholar
[543] Becirevic, D., Fajfer, S., Nisandzic, I., and Tayduganov, A., Angular distributions of D (∗) ℓ v̅ decays and search of New Physics, arXiv:1602.03030.Google Scholar
[544] Bardhan, D., Byakti, P., and Ghosh, D., A closer look at the R D and R D anomalies, JHEP 01 (2017) 125, [arXiv:1610.03038].Google Scholar
[545] Ligeti, Z., Papucci, M., and Robinson, D. J., New physics in the visible final states of D (∗) τν , JHEP 01 (2017) 083, [arXiv:1610.02045].Google Scholar
[546] Alonso, R., Kobach, A., and Martin Camalich, J., New physics in the kinematic distributions of D (∗) τ (→ v τ ) τ , Phys. Rev. D94 (2016), no. 9 094021, [arXiv:1602.07671].Google Scholar
[547] Alok, A. K., Kumar, D., Kumbhakar, S., and Sankar, S. U., D polarization as a probe to discriminate new physics in D τ v̅ , Phys. Rev. D95 (2017), no. 11 115038, [arXiv:1606.03164].Google Scholar
[548] Alonso, R., Martin Camalich, J., and Westhoff, S., Tau properties in Dτν from visible final-state kinematics, Phys. Rev. D95 (2017), no. 9 093006, [arXiv:1702.02773].Google Scholar
[549] M. Ivanov, A., Körner, J. G., and Tran, C.-T., Probing new physics in 0D (∗) τ τ using the longitudinal, transverse, and normal polarization components of the tau lepton, Phys. Rev. D95 (2017), no. 3 036021, [arXiv:1701.02937].Google Scholar
[550] () Colangelo, P. and De Fazio, F., Scrutinizing BD () ν and BD () ν in search of new physics footprints, JHEP 06 (2018) 082, [arXiv:1801.10468].Google Scholar
[551] Blanke, M., Crivellin, A., S. de Boer, Moscati, M., Nierste, U., Nisandzic, I., and Kitahara, T., Impact of polarization observables and B c τν on new physics explanations of the bcτν anomaly, Phys. Rev. D99 (2019), no. 7 075006, [arXiv:1811.09603].Google Scholar
[552] Bardhan, D. and Ghosh, D., B-meson charged current anomalies: The post-Moriond status, arXiv:1904.10432.Google Scholar
[553] Murgui, C., Peuelas, A., Jung, M., and Pich, A., Global fit to bcτν transitions, arXiv:1904.09311.Google Scholar
[554] Blanke, M., Crivellin, A., Kitahara, T., Moscati, M., Nierste, U., and Nisandzic, I., Addendum: “Impact of polarization observables and B c τν on new physics explanations of the bcτν anomaly,” arXiv:1905.08253.Google Scholar
[555] Shi, R.-X., Geng, L.-S., Grinstein, B., Jäger, S., and Martin Camalich, J., Revisiting the new-physics interpretation of the bcτν data, arXiv:1905.08498.Google Scholar
[556] Asadi, P. and Shih, D., Maximizing the impact of new physics in bcτν anomalies, arXiv:1905.03311.Google Scholar
[557] Iguro, S. and Omura, Y., Status of the semileptonic B decays and muon g-2 in general 2HDMs with right-handed neutrinos, JHEP 05 (2018) 173, [arXiv:1802.01732].Google Scholar
[558] Greljo, A., Robinson, D. J., Shakya, B., and Zupan, J., R(D()) from W and right-handed neutrinos, JHEP 09 (2018) 169, [arXiv:1804.04642].Google Scholar
[559] Robinson, D. J., Shakya, B., and Zupan, J., Right-handed neutrinos and R(D (∗)), JHEP 02 (2019) 119, [arXiv:1807.04753].Google Scholar
[560] Azatov, A., Barducci, D., Ghosh, D., Marzocca, D., and Ubaldi, L., Combined explanations of B-physics anomalies: The sterile neutrino solution, JHEP 10 (2018) 092, [arXiv:1807.10745].Google Scholar
[561] Buchmuller, W. and Wyler, D., Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B268 (1986) 621653.Google Scholar
[562] Grzadkowski, B., Iskrzynski, M., Misiak, M., and Rosiek, J., Dimension-six terms in the standard model lagrangian, JHEP 1010 (2010) 085, [arXiv:1008.4884].Google Scholar
[563] Aebischer, J., Crivellin, A., Fael, M., and Greub, C., Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037, [arXiv:1512.02830].Google Scholar
[564] Cirigliano, V., Jenkins, J., and Gonzalez-Alonso, M., Semileptonic decays of light quarks beyond the standard model, Nucl. Phys. B830 (2010) 95115, [arXiv:0908.1754].Google Scholar
[565] Alonso, R., Grinstein, B., and Martin Camalich, J., SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802, [arXiv:1407.7044].Google Scholar
[566] Cata, O. and Jung, M., Signatures of a nonstandard Higgs boson from flavor physics, Phys. Rev. D92 (2015), no. 5 055018, [arXiv:1505.05804].Google Scholar
[567] Watanabe, R., New physics effect on B c J/ψτ v̅ in relation to the R D(∗) anomaly, Phys. Lett. B776 (2018) 59, [arXiv:1709.08644].Google Scholar
[568] Detmold, W., Lehner, C., and Meinel, S., Λ b pℓ and Λ b → Λ c form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D92 (2015), no. 3 034503, [arXiv:1503.01421].Google Scholar
[569] Datta, A., Kamali, S., Meinel, S., and Rashed, A., Phenomenology of Λ b → Λ c τν τ using lattice QCD calculations, JHEP 08 (2017) 131, [arXiv:1702.02243].Google Scholar
[570] Li, X.-Q., Yang, Y.-D., and Zhang, X., Revisiting the one leptoquark solution to the R(D (∗)) anomalies and its phenomenological implications, JHEP 08 (2016) 054, [arXiv:1605.09308].Google Scholar
[571] Alonso, R., Grinstein, B., and Martin Camalich, J., Lifetime of B c constrains explanations for anomalies in D (∗) τ v̅ , Phys. Rev. Lett. 118 (2017), no. 8 081802, [arXiv:1611.06676].Google Scholar
[572] Sakaki, Y., Tanaka, M., Tayduganov, A., and Watanabe, R., Probing new physics with q 2 distributions in D (∗) τ v̅ , Phys. Rev. D91 (2015), no. 11 114028, [arXiv:1412.3761].Google Scholar
[573] Bhattacharya, S., Nandi, S., and Patra, S. K., Looking for possible new physics in D (∗) τ v̅ τ in light of recent data, Phys. Rev. D95 (2017), no. 7 075012, [arXiv:1611.04605].Google Scholar
[574] Celis, A., Jung, M., Li, X.-Q., and Pich, A., Scalar contributions to bc(u)τ v̅ transitions, Phys. Lett. B771 (2017) 168179, [arXiv:1612.07757].Google Scholar
[575] Colangelo, P., De, F. Fazio, and F. Loparco, Probing new physics with ρ(770) and a 1 (1260) , arXiv:1906.07068.Google Scholar
[576] BaBar Collaboration, Lees, J. P. et al., Measurement of an excess of D (∗) τ τ decays and implications for charged Higgs bosons, Phys. Rev. D88 (2013), no. 7 072012, [arXiv:1303.0571].Google Scholar
[577] Belle Collaboration, Huschle , M.et al., Measurement of the branching ratio of D (∗) τ τ relative to D (∗) decays with hadronic tagging at Belle, Phys. Rev. D92 (2015), no. 7 072014, [arXiv:1507.03233].Google Scholar
[578] Belle Collaboration, Hirose, S. et al., Measurement of the τ lepton polarization and R(D ) in the decay D τ τ , Phys. Rev. Lett. 118 (2017), no. 21 211801, [arXiv:1612.00529].Google Scholar
[579] Belle Collaboration, Sato , Y.et al., Measurement of the branching ratio of 0D ∗+ τ τ relative to 0D ∗+ decays with a semileptonic tagging method, Phys. Rev. D94 (2016), no. 7 072007, [arXiv:1607.07923].Google Scholar
[580] LHCb Collaboration, Aaij, R. et al., Measurement of the ratio of branching fractions B( 0D ∗+ τ τ )/B( 0D ∗+ μ μ ), Phys. Rev. Lett. 115 (2015), no. 11 111803, [arXiv:1506.08614]. [Erratum: Phys. Rev. Lett.115,no.15,159901(2015)].Google Scholar
[581] Ciezarek, G., Franco Sevilla, M., Hamilton, B., Kowalewski, R., Kuhr, T., Lüth, V., and Sato, Y., A challenge to lepton universality in B meson decays, Nature 546 (2017) 227233, [arXiv:1703.01766].Google Scholar
[582] LHCb Collaboration, Aaij, R. et al., Measurement of the ratio of branching fractions B(B + c J/ψτ + ν τ )/B(B + c J/ψμ + ν μ ), Phys. Rev. Lett. 120 (2018), no. 12 121801, [arXiv:1711.05623].Google Scholar
[583] BaBar Collaboration, Lees, J. et al., Evidence for an excess of D (∗) τ τ decays, Phys. Rev. Lett. 109 (2012) 101802, [arXiv:1205.5442].Google Scholar
[584] LHCb Collaboration, Aaij, R. et al., Measurement of the ratio of the B 0D ∗− τ + ν τ and B 0D ∗− μ + ν μ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018), no. 17 171802, [arXiv:1708.08856].Google Scholar
[585] MILC Collaboration, Bailey, J. A. et al., BDℓν form factors at nonzero recoil and |V cb | from 2+1-flavor lattice QCD, Phys. Rev. D92 (2015), no. 3 034506, [arXiv:1503.07237].Google Scholar
[586] Hiller, G., Lepton nonuniversality anomalies and implications, in 53rd Rencontres de Moriond on QCD and high energy interactions (Moriond QCD 2018) La Thuile, Italy, March 17–24, 2018, 2018. arXiv:1804.02011.Google Scholar
[587] Belle Collaboration, Abdesselam, A. et al., Measurement of R(D) and R(D ) with a semileptonic tagging method, arXiv:1904.08794.Google Scholar
[588] Crivellin, A. and Saturnino, F., Explaining the flavor anomalies with a vector leptoquark (Moriond 2019 update), 2019. arXiv:1906.01222.Google Scholar
[589] Belle Collaboration, Abdesselam, A. et al., Measurement of the D ∗− polarization in the decay B 0D ∗− τ + ν τ , in 10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17–21, 2018, 2019. arXiv:1903.03102.Google Scholar
[590] Bhattacharya, S., Nandi, S., and Kumar Patra, S., bcτν τ Decays: A catalogue to compare, constrain, and correlate new physics effects, Eur. Phys. J. C79 (2019), no. 3 268, [arXiv:1805.08222].Google Scholar
[591] Huang, Z.-R., Li, Y., C.-Lu, D., Paracha, M. A., and Wang, C., Footprints of new physics in bcτν transitions, Phys. Rev. D98 (2018), no. 9 095018, [arXiv:1808.03565].Google Scholar
[592] Alonso, R., Martin Camalich, J., and Westhoff, S., Tau polarimetry in B meson decays, Sci Post Phys. Proc. 1 (2019) 012, [arXiv:1811.05664].Google Scholar
[593] Yan, H., Y.-D. Yang, and X.-B. Yuan, Phenomenology of bcτ v̅ decays in a scalar leptoquark model, arXiv:1905.01795.Google Scholar
[594] Collaboration, A. V. Artamonov, et al., New measurement of the K +π + v v̅ branching ratio, Phys. Rev. Lett. 101 (2008) 191802, [arXiv:0808.2459].Google Scholar
[595] Littenberg, L. S., The CP violating decay K Lπ 0 v v̅ , Phys. Rev. D39 (1989) 33223324.Google Scholar
[596] Buchalla, G. and Isidori, G., The CP conserving contribution to K Lπ 0 v v̅ in the standard model, Phys. Lett. B440 (1998) 170–178, [hep-ph/9806501].Google Scholar
[597] Buchalla, G. and J, A.. Buras, Kπν v̅ and high precision determinations of the CKM matrix, Phys. Rev. D54 (1996) 6782–6789, [hep-ph/9607447].Google Scholar
[598] KOTO Collaboration, Ahn, J. K. et al., Search for the K L π 0 νν and K L π 0 X 0 decays at the J-PARC KOTO experiment, Phys. Rev. Lett. 122 (2019), no. 2 021802, [arXiv:1810.09655].Google Scholar
[599] KLEVER Project Collaboration, Ambrosino, F. et al., KLEVER: An experiment to measure BR(K L π 0 v v̅) at the CERN SPS, arXiv:1901.03099.Google Scholar
[600] He, X.-G., Tandean, J., and Valencia, G., Charged-lepton-flavor violation in |ΔS | = 1 hyperon decays, arXiv:1903.01242.Google Scholar
[601] Buras, A. J., Buttazzo, D., and Knegjens, R., Kπν v̅ and ɛ ′ /ɛ in simplified new physics models, JHEP 11 (2015) 166, [arXiv:1507.08672].Google Scholar
[602] Grossman, Y. and Nir, Y., K L π 0 v v̅ beyond the standard model, Phys. Lett. B398 (1997) 163–168, [hep-ph/9701313].Google Scholar
[603] Colangelo, P., De Fazio, F., Santorelli, P., and Scrimieri, E., Rare BK (∗) v v̅ decays at B factories, Phys. Lett. B395 (1997) 339–344, [hep-ph/9610297].Google Scholar
[604] Altmannshofer, W., Buras, A. J., Straub, D. M., and Wick, M., New strategies for new physics search in BK v v̅, BKν v̅ and BX s ν v̅ decays, JHEP 04 (2009) 022, [arXiv:0902.0160].Google Scholar
[605] Bouchard, C., Lepage, G. P., Monahan, C., Na, H., and Shigemitsu, J., Rare decay BKll form factors from lattice QCD, Phys. Rev. D 88, 054509 (2013) 054509, [arXiv:1306.2384].Google Scholar
[606] Horgan, R. R., Liu, Z., Meinel, S., and Wingate, M., Lattice QCD calculation of form factors describing the rare decays BK + and B s ϕℓ + , Phys. Rev. D89 (2014) 094501, [arXiv:1310.3722].Google Scholar
[607] Buras, A. J., Girrbach-Noe, J., Niehoff, C., and Straub, D. M., BK (∗) v v̅ decays in the standard model and beyond, JHEP 1502 (2015) 184, [arXiv:1409.4557].Google Scholar
[608] Crivellin, A. and Pokorski, S., Can the differences in the determinations of V ub and V cb be explained by new physics? Phys. Rev. Lett. 114 (2015), no. 1 011802, [arXiv:1407.1320].Google Scholar
[609] Hiller, G. and Schmaltz, M., R K and future bsℓℓ BSM opportunities, Phys. Rev. D90 (2014) 054014, [arXiv:1408.1627].Google Scholar
[610] Buras, A. J., Gemmler, K., and Isidori, G., Quark flavour mixing with right-handed currents: An effective theory approach, Nucl. Phys. B843 (2011) 107142, [arXiv:1007.1993].Google Scholar
[611] Buras, A. J., F. De Fazio, , and Girrbach, J., The anatomy of Z’ and Z with flavour changing neutral currents in the flavour precision era, JHEP 1302 (2013) 116, [arXiv:1211.1896].Google Scholar
[612] Buras, A. J. and Girrbach, J., Left-handed Z’ and Z FCNC quark couplings facing new b + μ data, JHEP 1312 (2013) 009, [arXiv:1309.2466].Google Scholar
[613] Buras, A. J., F. De Fazio, J. Girrbach, , and Carlucci, M. V., The anatomy of quark flavour observables in 331 models in the flavour precision era, JHEP 1302 (2013) 023, [arXiv:1211.1237].Google Scholar
[614] Straub, D. M., Anatomy of flavour-changing Z couplings in models with partial compositeness, JHEP 1308 (2013) 108, [arXiv:1302.4651].Google Scholar
[615] Buras, A. J., F. De Fazio, , and Girrbach-Noe, J., Z-Z’ mixing and Z-mediated FCNCs in SU(3) C × SU(3) L × U(1) X models, JHEP 1408 (2014) 039, [arXiv:1405.3850].Google Scholar
[616] Biancofiore, P., Colangelo, P., F. De Fazio, , and Scrimieri, E., Exclusive bsν v̅ induced transitions in RS c model, Eur. Phys. J. C75 (2015) 134, [arXiv:1408.5614].Google Scholar
[617] Grossman, Y., Ligeti, Z., and Nardi, E., First limit on inclusive bx s ν v̅ decay and constraints on new physics, Nucl. Phys. B465 (1996) 369–398, [hep-ph/9510378].Google Scholar
[618] Gubernari, N., Kokulu, A., and D. van Dyk, , BP and BV form factors from B-meson light-cone sum rules beyond leading twist, JHEP 01 (2019) 150, [arXiv:1811.00983].Google Scholar
[619] Belle Collaboration, Grygier , J.et al., Search for Bhν v̅ decays with semileptonic tagging at Belle, Phys. Rev. D96 (2017), no. 9 091101, [arXiv:1702.03224]. [Addendum: Phys. Rev. D97, no.9, 099902(2018)].Google Scholar
[620] Hiller, G. and Zwicky, R., (A)symmetries of weak decays at and near the kinematic endpoint, JHEP 03 (2014) 042, [arXiv:1312.1923].Google Scholar
[621] Melikhov, D., Nikitin, N., and Simula, S., Right-handed currents in rare exclusive B → (K, K ) neutrino anti-neutrino decays, Phys. Lett. B428 (1998) 171–178, [hep-ph/9803269].Google Scholar
[622] Schmidt-Hoberg, K., Staub, F., and Winkler, M. W., Constraints on light mediators: Confronting dark matter searches with B physics, Phys. Lett. B727 (2013) 506510, [arXiv:1310.6752].Google Scholar
[623] Hurth, T., Isidori, G., Kamenik, J. F., and Mescia, F., Constraints on new physics in MFV models: A model-independent analysis of ΔF =1 processes, Nucl. Phys. B808 (2009) 326346, [arXiv:0807.5039].Google Scholar
[624] G. D’Ambrosio, G. Giudice, F., Isidori, G., and Strumia, A., Minimal flavour violation: An effective field theory approach, Nucl. Phys. B645 (2002) 155–187, [hep-ph/0207036].Google Scholar
[625] Gorbahn, M. and Haisch, U., Charm quark contribution to K L μ + μ at next-to-next-to-leading order, Phys. Rev. Lett. 97 (2006) 122002, [hep-ph/0605203].Google Scholar
[626] Isidori, G. and Unterdorfer, R., On the short-distance constraints from K L,S μ + μ , JHEP 01 (2004) 009, [hep-ph/0311084].Google Scholar
[627] G. D’Ambrosio and Portoles, J., Vector meson exchange contributions to Kπγγ and K L γℓ + , Nucl. Phys. B492 (1997) 417–454, [hep-ph/9610244].Google Scholar
[628] Gérard, J.-M., Smith, C., and Trine, S., Radiative kaon decays and the penguin contribution to the ΔI = 1/2 rule, Nucl. Phys. B730 (2005) 1–36, [hep-ph/0508189].Google Scholar
[629] Gomez Dumm, D. and Pich, A., Long distance contributions to the K L μ + μ decay width, Phys. Rev. Lett. 80 (1998) 4633–4636, [hep-ph/9801298].Google Scholar
[630] Ecker, G. and Pich, A., The longitudinal muon polarization in K L μ + μ , Nucl. Phys. B366 (1991) 189205.Google Scholar
[631] LHCb Collaboration, Aaij, R. et al., Improved limit on the branching fraction of the rare decay K S 0μ + μ , Eur. Phys. J. C77 (2017), no. 10 678, [arXiv:1706.00758].Google Scholar
[632] D’Ambrosio, G. and Kitahara, T., Direct CP violation in Kμ + μ , Phys. Rev. Lett. 119 (2017), no. 20 201802, [arXiv:1707.06999].Google Scholar
[633] D’Ambrosio, G., Ecker, G., Isidori, G., and Portoles, J., The decays Kπℓ + beyond leading order in the chiral expansion, JHEP 08 (1998) 004, [hep-ph/9808289].Google Scholar
[634] Buchalla, G., D’Ambrosio, G., and Isidori, G., Extracting short-distance physics from K L,S π 0 e + e decays, Nucl. Phys. B672 (2003) 387–408, [hep-ph/0308008].Google Scholar
[635] Isidori, G., Smith, C., and Unterdorfer, R., The rare decay K L π 0 μ + μ within the SM, Eur. Phys. J. C36 (2004) 57–66, [hep-ph/0404127].Google Scholar
[636] Friot, S., Greynat, D., and De Rafael, E., Rare kaon decays revisited, Phys. Lett. B595 (2004) 301–308, [hep-ph/0404136].Google Scholar
[637] Mescia, F., Smith, C., and Trine, S., K L π 0 e + e and K L π 0 μ + μ : A binary star on the stage of flavor physics, JHEP 08 (2006) 088, [hep-ph/0606081].Google Scholar
[638] KTeV Collaboration, Alavi-Harati, A. et al., Search for the rare decay K L π 0 e + e , Phys. Rev. Lett. 93 (2004) 021805, [hep-ex/0309072].Google Scholar
[639] KTeV Collaboration, Alavi-Harati, A. et al., Search for the decay K L π 0 μ + μ , Phys. Rev. Lett. 84 (2000) 5279–5282, [hep-ex/0001006].Google Scholar
[640] Prades, J., ChPT progress on non-leptonic and radiative kaon decays, PoS KAON (2008) 022, [arXiv:0707.1789].Google Scholar
[641] Bruno, C. and Prades, J., Rare kaon decays in the 1/N c -expansion, Z. Phys. C57 (1993) 585–594, [hep-ph/9209231].Google Scholar
[642] D’Ambrosio, G., Greynat, D., and Knecht, M., On the amplitudes for the CP-conserving K ± (K S ) → π ± (π 0) + rare decay modes, JHEP 02 (2019) 049, [arXiv:1812.00735].Google Scholar
[643] D’Ambrosio, G., Greynat, D., and Knecht, M., Matching long and short distances at order O(α s ) in the form factors for Kπℓ + , arXiv:1906.03046.Google Scholar
[644] Collaboration, Batley , J.et al., A precision measurement of direct CP violation in the decay of neutral kaons into two pions, Phys. Lett. B544 (2002) 97–112, [hep-ex/0208009].Google Scholar
[645] KTeV Collaboration, Alavi-Harati, A. et al., Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system, Phys. Rev. D67 (2003) 012005, [hep-ex/0208007].Google Scholar
[646] KTeV Collaboration, Abouzaid, E. et al., Precise measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system, Phys. Rev. D83 (2011) 092001, [arXiv:1011.0127].Google Scholar
[647] Buras, A. J., Gambino, P., and Haisch, U. A., Electroweak penguin contributions to non-leptonic ΔF = 1 decays at NNLO, Nucl. Phys. B570 (2000) 117–154, [hep-ph/9911250].Google Scholar
[648] M. Cerdá-Sevilla, Gorbahn, M., Jäger, S., and Kokulu, A., Towards NNLO accuracy for ε ′ /ε , J. Phys. Conf. Ser. 800 (2017), no. 1 012008, [arXiv:1611.08276].Google Scholar
[649] Cerdá-Sevilla, M., NNLO QCD contributions to ε ′ /ε , Acta Phys. Polon. B49 (2018) 10871096.Google Scholar
[650] Ellis, J. R., Gaillard, M. K., and Nanopoulos, D. V., Left-handed currents and CP violation, Nucl. Phys. B109 (1976) 213243.Google Scholar
[651] Gilman, F. J. and Wise, M. B., The ΔI = 1/2 rule and violation of CP in the six quark model, Phys. Lett. B83 (1979) 8386.Google Scholar
[652] Guberina, B. and Peccei, R. D., Quantum chromodynamic effects and CP violation in the Kobayashi-Maskawa model, Nucl. Phys. B163 (1980) 289311.Google Scholar
[653] Donoghue, J. F., Golowich, E., Holstein, B. R., and Trampetic, J., Electromagnetic and isospin breaking effects decrease ɛ ′ /ɛ, Phys. Lett. B179 (1986) 361. [Erratum: Phys. Lett.B188,511(1987)].Google Scholar
[654] Bijnens, J. and Wise, M. B., Electromagnetic contribution to ε ′ /ε, Phys. Lett. B137 (1984) 245250.Google Scholar
[655] Flynn, J. M. and Randall, L., The electromagnetic penguin contribution to ε ′ /ε for large top quark mass, Phys. Lett. B224 (1989) 221.Google Scholar
[656] Buchalla, G., Buras, A. J., and Harlander, M. K., The anatomy of ε ′ /ε in the standard model, Nucl. Phys. B337 (1990) 313362.Google Scholar
[657] Paschos, E. A. and Wu, Y. L., Correlations between ε ′ /ε and heavy top, Mod. Phys. Lett. A6 (1991) 93106.Google Scholar
[658] Lusignoli, M., Maiani, L., Martinelli, G., and Reina, L., Mixing and CP violation in K and B mesons: A lattice QCD point of view, Nucl. Phys. B369 (1992) 139170.Google Scholar
[659] Buras, A. J., Jamin, M., and Lautenbacher, M. E., Two loop anomalous dimension matrix for ΔS = 1 weak nonleptonic decays. 2. O(αα s ), Nucl. Phys. B400 (1993) 75–102, [hep-ph/9211321].Google Scholar
[660] Bertolini, S., Fabbrichesi, M., and Eeg, J. O., Theory of the CP violating parameter ɛ ′ /ɛ, Rev. Mod. Phys. 72 (2000) 65–93, [hep-ph/9802405].Google Scholar
[661] Buras, A. J. and Jamin, M., ε ′ /ε at the NLO: 10 years later, JHEP 01 (2004) 048, [hep-ph/0306217].Google Scholar
[662] Bertolini, S., Eeg, J. O., Maiezza, A., and Nesti, F., New physics in ɛ ′ from gluomagnetic contributions and limits on left-right symmetry, Phys. Rev. D86 (2012) 095013, [arXiv:1206.0668].Google Scholar
[663] Cirigliano, V., Pich, A., Ecker, G., and Neufeld, H., Isospin violation in ɛ, Phys. Rev. Lett. 91 (2003) 162001, [hep-ph/0307030].Google Scholar
[664] Cirigliano, V., Ecker, G., Neufeld, H., and Pich, A., Isospin breaking in Kππ decays, Eur. Phys. J. C33 (2004) 369–396, [hep-ph/0310351].Google Scholar
[665] Bijnens, J. and Borg, F., Isospin breaking in K → 3π decays III: Bremsstrahlung and fit to experiment, Eur. Phys. J. C40 (2005) 383–394, [hep-ph/0501163].Google Scholar
[666] Bobeth, C., Buras, A. J., Celis, A., and Jung, M., Patterns of flavour violation in models with vector-like quarks, JHEP 04 (2017) 079, [arXiv:1609.04783].Google Scholar
[667] Bobeth, C. and Buras, A. J., Leptoquarks meet ε ′ /ε and rare kaon processes, JHEP 02 (2018) 101, [arXiv:1712.01295].Google Scholar
[668] Ciuchini, M., Franco, E., Martinelli, G., Reina, L., and Silvestrini, L., An upgraded analysis of ε ′ /ε at the next-to-leading order, Z. Phys. C68 (1995) 239–256, [hep-ph/9501265].Google Scholar
[669] Bosch, S. et al., Standard model confronting new results for ε ′ /ε , Nucl. Phys. B565 (2000) 3–37, [hep-ph/9904408].Google Scholar
[670] Kitahara, T., Nierste, U., and Tremper, P., Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and ɛ K /ɛ K in the standard model and beyond, JHEP 12 (2016) 078, [arXiv:1607.06727].Google Scholar
[671] Colangelo, G., Gasser, J., and Leutwyler, H., ππ scattering, Nucl. Phys. B603 (2001) 125–179, [hep-ph/0103088].Google Scholar
[672] Wang, T. and Kelly, C., Studies of I= 0 and 2 ππ scattering with physical pion mass, PoS LATTICE2018 (2019) 276.Google Scholar
[673] Kelly, C. and Wang, T., Update on the improved lattice calculation of direct CP-violation in K decays, PoS LATTICE2018 (2019) 277.Google Scholar
[674] Buras, A. J., ɛ ′ /ɛ-2018: A Christmas story, arXiv:1812.06102.Google Scholar
[675] Blanke, M., J, A.. Buras, Recksiegel, S., Tarantino, C., and Uhlig, S., Littlest Higgs model with T-parity confronting the new data on D 0 − ̅D 0 mixing, Phys. Lett. B657 (2007) 81–86, [hep-ph/0703254].Google Scholar
[676] Bigi, I. I., Blanke, M., Buras, A. J., and Recksiegel, S., CP violation in D 0 − ̅D 0 oscillations: General considerations and applications to the littlest Higgs model with T-parity, JHEP 07 (2009) 097, [arXiv:0904.1545].Google Scholar
[677] Blaylock, G., Seiden, A., and Nir, Y., The role of CP violation in D 0 − ̅D 0 mixing, Phys. Lett. B355 (1995) 555–560, [hep-ph/9504306].Google Scholar
[678] Bianco, S., Fabbri, F. L., Benson, D., and Bigi, I., A Cicerone for the physics of charm, Riv. Nuovo Cim. 26N7 (2003) 1–200, [hep-ex/0309021].Google Scholar
[679] Golowich, E., Pakvasa, S., and Petrov, A. A., New physics contributions to the lifetime difference in D 0 − ̅D 0 mixing, Phys. Rev. Lett. 98 (2007) 181801, [hep-ph/0610039].Google Scholar
[680] Ciuchini, M., Franco, E., Guadagnoli, D., Lubicz, V., Pierini, M., Porretti, V., and Silvestrini, L., D − ̅D mixing and new physics: General considerations and constraints on the MSSM, Phys. Lett. B655 (2007) 162–166, [hep-ph/0703204].Google Scholar
[681] Golowich, E., Hewett, J., Pakvasa, S., and Petrov, A. A., Implications of D 0 − ̅D 0 mixing for new physics, Phys. Rev. D76 (2007) 095009, [arXiv:0705.3650].Google Scholar
[682] Artuso, M., Meadows, B., and Petrov, A. A., Charm meson decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 249291, [arXiv:0802.2934].Google Scholar
[683] Blum, K., Grossman, Y., Nir, Y., and Perez, G., Combining K 0 0 mixing and D 0 − ̅D 0 mixing to constrain the flavor structure of new physics, Phys. Rev. Lett. 102 (2009) 211802, [arXiv:0903.2118].Google Scholar
[684] Gedalia, O., Grossman, Y., Nir, Y., and Perez, G., Lessons from recent measurements of D 0 − ̅D 0 Mixing, Phys. Rev. D80 (2009) 055024, [arXiv:0906.1879].Google Scholar
[685] Kagan, A. L. and Sokoloff, M. D., On indirect CP violation and implications for D 0 − ̅D 0 and B 0 0 mixing, Phys. Rev. D80 (2009) 076008, [arXiv:0907.3917].Google Scholar
[686] Isidori, G., Nir, Y., and Perez, G., Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355, [arXiv:1002.0900].Google Scholar
[687] UTfit Collaboration, Bevan , A. J.et al., The UTfit collaboration average of D meson mixing data: Winter 2014, JHEP 03 (2014) 123, [arXiv:1402.1664].Google Scholar
[688] Golowich, E. and A, A.. Petrov, Short distance analysis of D 0 − ̅D 0 mixing, Phys. Lett. B625 (2005) 53–62, [hep-ph/0506185].Google Scholar
[689] Bobrowski, M., Lenz, A., and Rauh, T., Short distance D 0 − ̅D 0 mixing, in Proceedings, 5th International Workshop on Charm Physics (Charm 2012): Honolulu, Hawaii, USA, May 14–17, 2012, 2012. arXiv:1208.6438.Google Scholar
[690] Lenz, A. J., Selected topics in heavy flavour physics, J. Phys. G41 (2014) 103001, [arXiv:1404.6197].Google Scholar
[691] Fajfer, S. and Kosnik, N., Prospects of discovering new physics in rare charm decays, Eur. Phys. J. C75 (2015), no. 12 567, [arXiv:1510.00965].Google Scholar
[692] Bhardwaj, V., Dorigo, M., and Yu, F.-S., Summary of WG7 at CKM 2018: “Mixing and CP violation in the D system: x D , y D , |q/p | D , ϕ D , and direct CP violation in D decays,” 2019. arXiv:1901.08131.Google Scholar
[693] LHCb Collaboration, Aaij , R.et al., Measurement of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 122 (2019), no. 23 231802, [arXiv:1903.03074].Google Scholar
[694] Dunietz, I. and Rosner, J. L., Time dependent CP violation effects in B 0 0 systems, Phys. Rev. D34 (1986) 1404.Google Scholar
[695] Grossman, Y., Nir, Y., and Perez, G., Testing new indirect CP violation, arXiv:0904.0305.Google Scholar
[696] Ligeti, Z., Papucci, M., and Perez, G., Implications of the measurement of the B 0 s 0 s mass difference, Phys. Rev. Lett 97 (2006) 101801, [hep-ph/0604112].Google Scholar
[697] Blanke, M., Buras, A. J., Guadagnoli, D., and Tarantino, C., Minimal flavour violation waiting for precise measurements of ΔM s , S ψϕ , A s SL, |V ub |, γ and B 0 s,d μ + μ , JHEP 10 (2006) 003, [hep-ph/0604057].Google Scholar
[698] Blanke, M. and Buras, A. J., A guide to flavour changing neutral currents in the littlest Higgs model with T-parity, Acta Phys. Polon. B38 (2007) 2923, [hep-ph/0703117].Google Scholar
[699] Hubisz, J., Lee, S. J., and Paz, G., The flavor of a little Higgs with T-parity, JHEP 06 (2006) 041, [hep-ph/0512169].Google Scholar
[700] Blanke, M. et al., Rare and CP-violating K and B decays in the littlest Higgs model with T-parity, JHEP 01 (2007) 066, [hep-ph/0610298].Google Scholar
[701] Aebischer, J., Bobeth, C., Buras, A. J., and Straub, D. M., Anatomy of ε ′ /ε beyond the standard model, Eur. Phys. J. C79 (2019), no. 3 219, [arXiv:1808.00466].Google Scholar
[702] LHCb Collaboration, Aaij , R.et al., Observation of CP violation in charm decays, arXiv:1903.08726.Google Scholar
[703] Chala, M., Lenz, A., Rusov, A. V., and Scholtz, J., ΔA CP within the standard model and beyond, arXiv:1903.10490.Google Scholar
[704] Li, H.-N., L, C.-D., and Yu, F.-S., Implications on the first observation of charm CPV at LHCb, arXiv:1903.10638.Google Scholar
[705] Grossman, Y. and Schacht, S., The Emergence of the ΔU = 0 rule in charm physics, arXiv:1903.10952.Google Scholar
[706] Brod, J., Grossman, Y., Kagan, A. L., and Zupan, J., A consistent picture for large penguins in Dπ + π , K + K , JHEP 10 (2012) 161, [arXiv:1203.6659].Google Scholar
[707] LHCb Collaboration, F. Ferrari, Charm mixing and CPV, 2019. arXiv:1906.10952.Google Scholar
[708] Bifani, S., Descotes-Genon, S., Romero Vidal, A., and Schune, M.-H., Review of lepton universality tests in B decays, J. Phys. G46 (2019), no. 2 023001, [arXiv:1809.06229].Google Scholar
[709] De Cian, M., Descotes-Genon, S., and Massri, K., Rare B, D and K decays, radiative and electroweak penguin decays, including constraints on V t d /V t s and ɛ ′ /ɛ: Summary of CKM 2018 Working Group 3, 2019. arXiv:1901.04541.Google Scholar
[710] Altmannshofer, W. and M, D.. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C75 (2015), no. 8 382, [arXiv:1411.3161].Google Scholar
[711] Fermilab Lattice, MILC Collaboration, A. Bazavov et al., |V us | from K 3 decay and four-flavor lattice QCD, arXiv:1809.02827.Google Scholar
[712] C.-Seng, Y., Gorchtein, M., Patel, H. H., and Ramsey-Musolf, M. J., Reduced hadronic uncertainty in the determination of V ud , Phys. Rev. Lett. 121 (2018), no. 24 241804, [arXiv:1807.10197].Google Scholar
[713] Belfatto, B., Beradze, R., and Berezhiani, Z., The CKM unitarity problem: A trace of new physics at the TeV scale? arXiv:1906.02714.Google Scholar
[714] LHCb Collaboration, Davis, A. C. S., Experimental prospects for V ud , V us , V cd , V cs and (semi-) leptonic decays at LHCb, in 10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17–21, 2018, 2019. arXiv:1901.04785.Google Scholar
[715] Filipuzzi, A., Portoles, J., and Gonzalez-Alonso, M., U(2)5 flavor symmetry and lepton universality violation in Wτν τ , Phys. Rev. D85 (2012) 116010, [arXiv:1203.2092].Google Scholar
[716] Pich, A., Precision tau physics, Prog. Part. Nucl. Phys. 75 (2014) 4185, [arXiv:1310.7922].Google Scholar
[717] PiENu Collaboration, A. Aguilar-Arevalo et al., Improved measurement of the π → ev branching ratio, Phys. Rev. Lett. 115 (2015), no. 7 071801, [arXiv:1506.05845].Google Scholar
[718] Blanke, M., Quo vadis flavour physics? – FPCP2017 theory summary and outlook, PoS FPCP2017 (2017) 042, [arXiv:1708.06326].Google Scholar
[719] Buttazzo, D., Greljo, A., Isidori, G., and Marzocca, D., B-physics anomalies: A guide to combined explanations, JHEP 11 (2017) 044, [arXiv:1706.07808].Google Scholar
[720] Altmannshofer, W., Niehoff, C., Stangl, P., and Straub, D. M., Status of the BK μ + μ anomaly after Moriond 2017, Eur. Phys. J. C77 (2017), no. 6 377, [arXiv:1703.09189].Google Scholar
[721] Altmannshofer, W., Stangl, P., and Straub, D. M., Interpreting hints for lepton flavor universality violation, Phys. Rev. D96 (2017), no. 5 055008, [arXiv:1704.05435].Google Scholar
[722] Beaujean, F., Bobeth, C., and van Dyk, D., Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C74 (2014) 2897, [arXiv:1310.2478]. [Erratum: Eur. Phys. J.C74,3179(2014)].Google Scholar
[723] Ciuchini, M., M, A.. Coutinho, Fedele, M., Franco, E., Paul, A., Silvestrini, L., and Valli, M., On flavourful Easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J. C77 (2017), no. 10 688, [arXiv:1704.05447].Google Scholar
[724] Alok, A. K., Bhattacharya, B., Datta, A., Kumar, D., Kumar, J., and London, D., New Physics in b + μ after the measurement of R K , Phys. Rev. D96 (2017), no. 9 095009, [arXiv:1704.07397].Google Scholar
[725] L.-Geng, S., Grinstein, B., Jäger, S., Martin Camalich, J., Ren, X.-L., and Shi, R.-X., Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D96 (2017), no. 9 093006, [arXiv:1704.05446].Google Scholar
[726] Hurth, T., Mahmoudi, F., Martinez Santos, D., and Neshatpour, S., Lepton nonuniversality in exclusive bsℓℓ decays, Phys. Rev. D96 (2017), no. 9 095034, [arXiv:1705.06274].Google Scholar
[727] Celis, A., Fuentes-Martin, J., Vicente, A., and Virto, J., Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality, Phys. Rev. D96 (2017), no. 3 035026, [arXiv:1704.05672].Google Scholar
[728] Choudhury, D., Kundu, A., Mandal, R., and Sinha, R., Minimal unified resolution to R(K (∗)) and R(D (∗)) anomalies with lepton mixing, Phys. Rev. Lett. 119 (2017), no. 15 151801, [arXiv:1706.08437].Google Scholar
[729] Hiller, G. and Nisandzic, I., R K and R K beyond the standard model, Phys. Rev. D96 (2017), no. 3 035003, [arXiv:1704.05444].Google Scholar
[730] D’Amico, G., Nardecchia, M., Panci, P., Sannino, F., Strumia, A., Torre, R., and Urbano, A., Flavour anomalies after the R K measurement, JHEP 09 (2017) 010, [arXiv:1704.05438].Google Scholar
[731] Arbey, A., Hurth, T., Mahmoudi, F., and Neshatpour, S., Hadronic and new physics contributions to bs transitions, Phys. Rev. D98 (2018), no. 9 095027, [arXiv:1806.02791].Google Scholar
[732] Capdevila, B., Laa, U., and Valencia, G., Anatomy of a six-parameter fit to the bsℓ + anomalies, arXiv:1811.10793.Google Scholar
[733] Kumar, J. and London, D., New physics in bse + e ? Phys. Rev. D99 (2019), no. 7 073008, [arXiv:1901.04516].Google Scholar
[734] Algueró, M., Capdevila, B., Descotes-Genon, S., Masjuan, P., and Matias, J., Are we overlooking lepton flavour universal new physics in bsℓℓ? Phys. Rev. D99 (2019), no. 7 075017, [arXiv:1809.08447].Google Scholar
[735] Alguer, M., Capdevila, B., Descotes-Genon, S., Masjuan, P., and Matias, J., What R K and Q 5 can tell us about new physics in bsℓℓ transitions? arXiv:1902.04900.Google Scholar
[736] Datta, A., Kumar, J., and London, D., The B anomalies and new physics in bse + e , arXiv:1903.10086.Google Scholar
[737] Ciuchini, M., M, A.. Coutinho, Fedele, M., Franco, E., Paul, A., Silvestrini, L., and Valli, M., New Physics in bsℓ + confronts new data on Lepton Universality, arXiv:1903.09632.Google Scholar
[738] Alguer, M., Capdevila, B., Crivellin, A., Descotes, S.-Genon, Masjuan, P., Matias, J., and Virto, J., Addendum: “Patterns of New Physics in bsℓ + transitions in the light of recent data,” arXiv:1903.09578.Google Scholar
[739] Kowalska, K., Kumar, D., and E. M. Sessolo, Implications for New Physics in bsμμ transitions after recent measurements by Belle and LHCb, arXiv:1903.10932.Google Scholar
[740] Alok, A. K., Dighe, A., Gangal, S., and Kumar, D., Continuing search for new physics in bsμμ decays: two operators at a time, JHEP 06 (2019) 089, [arXiv:1903.09617].Google Scholar
[741] Arbey, A., Hurth, T., Mahmoudi, F., Martinez Santos, D., and Neshatpour, S., Update on the bs anomalies, arXiv:1904.08399.Google Scholar
[742] Bobeth, C. and Haisch, U., New Physics in Γ12 s : (s̅b)(̅ττ) Operators, Acta Phys. Polon. B44 (2013) 127– 176, [arXiv:1109.1826].Google Scholar
[743] Crivellin, A., Greub, C., Müller, D., and Saturnino, F., Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark, Phys. Rev. Lett. 122 (2019), no. 1 011805, [arXiv:1807.02068].Google Scholar
[744] Buras, A. J., Misiak, M., and Urban, J., Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B586 (2000) 397–426, [hep-ph/0005183].Google Scholar
[745] Ciuchini, M., Franco, E., Lubicz, V., Martinelli, G., Scimemi, I., et al., Next-to-leading order QCD corrections to ΔF = 2 effective Hamiltonians, Nucl. Phys. B523 (1998) 501–525, [hep-ph/9711402].Google Scholar
[746] Buras, A. J., Jäger, S., and Urban, J., Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B605 (2001) 600–624, [hep-ph/0102316].Google Scholar
[747] Boyle, P., Garron, N., Kettle, J., Khamseh, A., and Tsang, J. T., BSM kaon mixing at the physical point, EPJ Web Conf. 175 (2018) 13010, [arXiv:1710.09176].Google Scholar
[748] Bazavov, A. et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D98 (2018), no. 7 074512, [arXiv:1712.09262].Google Scholar
[749] Buras, A. J. and Girrbach, J., Complete NLO QCD corrections for tree level ΔF = 2 FCNC processes, JHEP 1203 (2012) 052, [arXiv:1201.1302].Google Scholar
[750] Beall, G., Bander, M., and Soni, A., Constraint on the mass scale of a left-right symmetric electroweak theory from the K L K S mass difference, Phys. Rev. Lett. 48 (1982) 848.Google Scholar
[751] Bagger, J. A., T, K.. Matchev, and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B412 (1997) 77–85, [hep-ph/9707225].Google Scholar
[752] SWME Collaboration, B. J. Choi et al., Kaon BSM B-parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD, Phys. Rev. D93 (2016), no. 1 014511, [arXiv:1509.00592].Google Scholar
[753] RBC/UKQCD Collaboration, Garron, N., J, R.. Hudspith, and A. T. Lytle, Neutral kaon mixing beyond the standard model with n f = 2 + 1 chiral fermions Part 1: Bare matrix elements and physical results, JHEP 11 (2016) 001, [arXiv:1609.03334].Google Scholar
[754] RBC, UKQCD Collaboration, P. Boyle, A., Garron, N., R. Hudspith, J., Lehner, C., and A. T. Lytle, Neutral kaon mixing beyond the standard model with n f = 2 + 1 chiral fermions. Part 2: Non perturbative renormalisation of the ΔF = 2 four-quark operators, JHEP 10 (2017) 054, [arXiv:1708.03552].Google Scholar
[755] Buras, A. J. and Gérard, J.-M., Dual QCD insight into BSM hadronic matrix elements for K 0 0 mixing from lattice QCD, Acta Phys. Polon. B50 (2019) 121, [arXiv:1804.02401].Google Scholar
[756] Aebischer, J., Fael, M., Greub, C., and Virto, J., B physics beyond the standard model at one loop: Complete renormalization group evolution below the electroweak scale, JHEP 09 (2017) 158, [arXiv:1704.06639].Google Scholar
[757] Brivio, I. and Trott, M., The standard model as an effective field theory, Phys. Rept. 793 (2019) 198, [arXiv:1706.08945].Google Scholar
[758] Jenkins, E. E., Manohar, A. V., and Trott, M., Renormalization group evolution of the standard model dimension six operators I: Formalism and lambda dependence, JHEP 10 (2013) 087, [arXiv:1308.2627].Google Scholar
[759] Jenkins, E. E., Manohar, A. V., and Trott, M., Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035, [arXiv:1310.4838].Google Scholar
[760] Alonso, R., Jenkins, E. E., Manohar, A. V., and Trott, M., Renormalization group evolution of the standard model dimension six operators III: Gauge coupling dependence and phenomenology, JHEP 04 (2014) 159, [arXiv:1312.2014].Google Scholar
[761] Alonso, R., Chang, H.-M., Jenkins, E. E., Manohar, A. V., and Shotwell, B., Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B734 (2014) 302307, [arXiv:1405.0486].Google Scholar
[762] Weinberg, S., Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 15661570.Google Scholar
[763] Wilczek, F. and Zee, A., Operator analysis of nucleon decay, Phys. Rev. Lett. 43 (1979) 15711573.Google Scholar
[764] Abbott, L. F. and Wise, M. B., The effective Hamiltonian for nucleon decay, Phys. Rev. D22 (1980) 2208.Google Scholar
[765] Feruglio, F., Paradisi, P., and Pattori, A., Revisiting lepton flavor universality in B decays, Phys. Rev. Lett. 118 (2017), no. 1 011801, [arXiv:1606.00524].Google Scholar
[766] Bobeth, C., Buras, A. J., Celis, A., and Jung, M., Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, JHEP 07 (2017) 124, [arXiv:1703.04753].Google Scholar
[767] Feruglio, F., Paradisi, P., and Pattori, A., On the Importance of electroweak corrections for B anomalies, JHEP 09 (2017) 061, [arXiv:1705.00929].Google Scholar
[768] Gonzlez-Alonso, M., Martin Camalich, J., and Mimouni, K., Renormalization-group evolution of new physics contributions to (semi)leptonic meson decays, Phys. Lett. B772 (2017) 777785, [arXiv:1706.00410].Google Scholar
[769] Kumar, J., London, D., and Watanabe, R., Combined explanations of the b + μ and b anomalies: A general model analysis, Phys. Rev. D99 (2019), no. 1 015007, [arXiv:1806.07403].Google Scholar
[770] Silvestrini, L. and Valli, M., Model-independent bounds on the standard model effective theory from flavour physics, arXiv:1812.10913.Google Scholar
[771] Langacker, P. and Plumacher, M., Flavor changing effects in theories with a heavy Z ′ boson with family nonuniversal couplings, Phys. Rev. D62 (2000) 013006, [hep-ph/0001204].Google Scholar
[772] Blanke, M., Buras, A. J., Gemmler, K., and Heidsieck, T., ΔF = 2 observables and BX q γ in the left-right asymmetric model: Higgs particles striking back, JHEP 1203 (2012) 024, [arXiv:1111.5014].Google Scholar
[773] Aebischer, J. et al., WCxf: An exchange format for Wilson coefficients beyond the standard model, Comput. Phys. Commun. 232 (2018) 7183, [arXiv:1712.05298].Google Scholar
[774] Gherardi, V., Marzocca, D., M. Nardecchia, and A. Romanino, Rank-one flavor violation and B-meson anomalies, arXiv:1903.10954.Google Scholar
[775] Fajfer, S., Kamenik, J. F., Nisandzic, I., and Zupan, J., Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801, [arXiv:1206.1872].Google Scholar
[776] Glashow, S. L., Guadagnoli, D., and Lane, K., Lepton flavor violation in B decays? Phys. Rev. Lett. 114 (2015) 091801, [arXiv:1411.0565].Google Scholar
[777] Bhattacharya, B., Datta, A., London, D., and Shivashankara, S., Simultaneous explanation of the R K and R(D (∗)) puzzles, Phys. Lett. B742 (2015) 370374, [arXiv:1412.7164].Google Scholar
[778] Alonso, R., Grinstein, B., and Martin Camalich, J., Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184, [arXiv:1505.05164].Google Scholar
[779] Calibbi, L., Crivellin, A., and Ota, T., Effective field theory approach to bsℓℓ ′ , BK (∗) v v̅ and BD (∗) τν with third generation couplings, Phys. Rev. Lett. 115 (2015) 181801, [arXiv:1506.02661].Google Scholar
[780] Jenkins, E. E., Manohar, A. V., and Stoffer, P., Low-energy effective field theory below the electroweak scale: Anomalous dimensions, JHEP 01 (2018) 084, [arXiv:1711.05270].Google Scholar
[781] Cirigliano, V., Dekens, W., de Vries, J., and Mereghetti, E., Constraining the top-Higgs sector of the standard model effective field theory, Phys. Rev. D94 (2016), no. 3 034031, [arXiv:1605.04311].Google Scholar
[782] J. de Blas, J. C. Criado, M. Perez-Victoria, , and Santiago, J., Effective description of general extensions of the standard model: The complete tree-level dictionary, JHEP 03 (2018) 109, [arXiv:1711.10391].Google Scholar
[783] del Aguila, F., Perez-Victoria, M., and Santiago, J., Observable contributions of new exotic quarks to quark mixing, JHEP 0009 (2000) 011, [hep-ph/0007316].Google Scholar
[784] F. del Aguila, J. de Blas, , and Perez-Victoria, M., Effects of new leptons in electroweak precision data, Phys. Rev. D78 (2008) 013010, [arXiv:0803.4008].Google Scholar
[785] F. del Aguila, J. de Blas, , and Perez-Victoria, M., Electroweak limits on general new vector bosons, JHEP 09 (2010) 033, [arXiv:1005.3998].Google Scholar
[786] J. de Blas, M. Chala, M. Perez-Victoria, , and Santiago, J., Observable effects of general new scalar particles, JHEP 04 (2015) 078, [arXiv:1412.8480].Google Scholar
[787] Dedes, A., Materkowska, W., Paraskevas, M., Rosiek, J., and Suxho, K., Feynman rules for the standard model effective field theory in R ξ -gauges, JHEP 06 (2017) 143, [arXiv:1704.03888].Google Scholar
[788] Dedes, A., Paraskevas, M., Rosiek, J., Suxho, K., and Trifyllis, L., SmeftFR – Feynman rules generator for the standard model effective field theory, arXiv:1904.03204.Google Scholar
[789] Brivio, I., Jiang, Y., and Trott, M., The SMEFTsim package, theory and tools, JHEP 12 (2017) 070, [arXiv:1709.06492].Google Scholar
[790] Misiak, M., Paraskevas, M., Rosiek, J., Suxho, K., and Zglinicki, B., Effective field theories in R ξ gauges, JHEP 02 (2019) 051, [arXiv:1812.11513].Google Scholar
[791] Jiang, M., Craig, N., Li, Y.-Y., and Sutherland, D., Complete one-loop matching for a singlet scalar in the standard model EFT, JHEP 02 (2019) 031, [arXiv:1811.08878].Google Scholar
[792] Arnan, P., Hofer, L., Mescia, F., and Crivellin, A., Loop effects of heavy new scalars and fermions in b + μ , JHEP 04 (2017) 043, [arXiv:1608.07832].Google Scholar
[793] Arnan, P., Crivellin, A., M. Fedele, and F. Mescia, Generic loop effects of new scalars and fermions in bsℓ + and a vector-like 4th generation, arXiv:1904.05890.Google Scholar
[794] Aebischer, J., Crivellin, A., and Greub, C., QCD improved matching for semi-leptonic B decays with leptoquarks, arXiv:1811.08907.Google Scholar
[795] Crivellin, A., Najjari, S., and Rosiek, J., Lepton flavor violation in the standard model with general dimension-six operators, JHEP 04 (2014) 167, [arXiv:1312.0634].Google Scholar
[796] Crivellin, A., Davidson, S., Pruna, G. M., and Signer, A., Renormalisation-group improved analysis of μe processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117, [arXiv:1702.03020].Google Scholar
[797] Cirigliano, V., Dekens, W., J. de Vries, M. L. Graesser, , and Mereghetti, E., A neutrinoless double beta decay master formula from effective field theory, JHEP 12 (2018) 097, [arXiv:1806.02780].Google Scholar
[798] Aebischer, J., Bobeth, C., Buras, A. J., Gérard, J.-M., and Straub, D. M., Master formula for ε ′ /ε beyond the standard model, Phys. Lett. B792 (2019) 465469, [arXiv:1807.02520].Google Scholar
[799] Endo, M., Kitahara, T., Mishima, S., and Yamamoto, K., Revisiting kaon physics in general Z scenario, Phys. Lett. B771 (2017) 3744, [arXiv:1612.08839].Google Scholar
[800] Endo, M., Kitahara, T., and Ueda, D., SMEFT top-quark effects on ΔF = 2 observables, arXiv:1811.04961.Google Scholar
[801] X.-He, G., Tandean, J., and Valencia, G., Lepton-flavor-violating semileptonic τ decay and Kπν v̅, arXiv:1904.04043.Google Scholar
[802] Leveille, J. P., The second order weak correction to g − 2 of the muon in arbitrary gauge models, Nucl. Phys. B137 (1978) 6376.Google Scholar
[803] Jegerlehner, F. and Nyffeler, A., The Muon g − 2, Phys. Rept. 477 (2009) 1110, [arXiv:0902.3360].Google Scholar
[804] Lindner, M., Platscher, M., and Queiroz, F. S., A call for new physics : The muon anomalous magnetic moment and Lepton flavor violation, Phys. Rept. 731 (2018) 182, [arXiv:1610.06587].Google Scholar
[805] Cirigliano, V., Gonzalez-Alonso, M., and Graesser, M. L., Non-standard charged current interactions: Beta decays versus the LHC, JHEP 02 (2013) 046, [arXiv:1210.4553].Google Scholar
[806] Dekens, W. and J. de Vries, , Renormalization group running of dimension-six sources of parity and time-reversal violation, JHEP 05 (2013) 149, [arXiv:1303.3156].Google Scholar
[807] Bhattacharya, T., Cirigliano, V., Gupta, R., Mereghetti, E., and Yoon, B., Dimension-5 CP-odd operators: QCD mixing and renormalization, Phys. Rev. D92 (2015), no. 11 114026, [arXiv:1502.07325].Google Scholar
[808] Grojean, C., Jenkins, E. E., Manohar, A. V., and Trott, M., Renormalization group scaling of Higgs operators and Γ(hγγ ), JHEP 04 (2013) 016, [arXiv:1301.2588].Google Scholar
[809] Cirigliano, V., Davidson, S., and Kuno, Y., Spin-dependent μe conversion, Phys. Lett. B771 (2017) 242246, [arXiv:1703.02057].Google Scholar
[810] Hu, Q.-Y., Li, X.-Q., and Yang, Y.-D., bcτν transitions in the standard model effective field theory, Eur. Phys. J. C79 (2019), no. 3 264, [arXiv:1810.04939].Google Scholar
[811] Jenkins, E. E., Manohar, A. V., and Stoffer, P., Low-energy effective field theory below the electroweak scale: Operators and matching, JHEP 03 (2018) 016, [arXiv:1709.04486].Google Scholar
[812] Hurth, T., Renner, S., and Shepherd, W., Matching for FCNC effects in the flavour-symmetric SMEFT, JHEP 06 (2019) 029, [arXiv:1903.00500].Google Scholar
[813] Straub, D. M., Flavio: A Python package for flavour and precision phenomenology in the standard model and beyond, arXiv:1810.08132.Google Scholar
[814] van, D. Dyk et al., EOS – A HEP Programm for Flavour Observables.Google Scholar
[815] Porod, W., Staub, F., and Vicente, A., A Flavor Kit for BSM models, Eur. Phys. J. C74 (2014), no. 8 2992, [arXiv:1405.1434].Google Scholar
[816] Porod, W. and Staub, F., SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458–2469, [arXiv:1104.1573].Google Scholar
[817] Evans, J. A. and Shih, D., FormFlavor manual, arXiv:1606.00003.Google Scholar
[818] Mahmoudi, F., SuperIso: A program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745754, [arXiv:0710.2067].Google Scholar
[819] de, J. Blas et al., HEPfit: A code for the combination of indirect and direct constraints on high energy physics models, arXiv:1910.14012.Google Scholar
[820] The GAMBIT Flavour Workgroup Collaboration, Bernlochner, F. U. et al., FlavBit: A GAMBIT module for computing flavour observables and likelihoods, Eur. Phys. J. C77 (2017), no. 11 786, [arXiv:1705.07933].Google Scholar
[821] Celis, A., Fuentes-Martin, J., Vicente, A., and Virto, J., DsixTools: The standard model effective field theory toolkit, Eur. Phys. J. C77 (2017), no. 6 405, [arXiv:1704.04504].Google Scholar
[822] Aebischer, J., Kumar, J., and Straub, D. M., Wilson: A Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C78 (2018), no. 12 1026, [arXiv:1804.05033].Google Scholar
[823] Criado, J. C., MatchingTools: A Python library for symbolic effective field theory calculations, Comput. Phys. Commun. 227 (2018) 4250, [arXiv:1710.06445].Google Scholar
[824] Bishara, F., Brod, J., Grinstein, B., and Zupan, J., DirectDM: A tool for dark matter direct detection, arXiv:1708.02678.Google Scholar
[825] Staub, F., Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780, [arXiv:1503.04200].Google Scholar
[826] Das Bakshi, S., Chakrabortty, J., and Patra, S. K., CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J. C79 (2019), no. 1 21, [arXiv:1808.04403].Google Scholar
[827] Criado, J. C., BasisGen: Automatic generation of operator bases, Eur. Phys. J. C79 (2019), no. 3 256, [arXiv:1901.03501].Google Scholar
[828] Descotes-Genon, S., Falkowski, A., Fedele, M., Gonzlez-Alonso, M., and Virto, J., The CKM parameters in the SMEFT, JHEP 05 (2019) 172, [arXiv:1812.08163].Google Scholar
[829] de Blas, J., Eberhardt, O., and Krause, C., Current and future constraints on Higgs couplings in the nonlinear effective theory, JHEP 07 (2018) 048, [arXiv:1803.00939].Google Scholar
[830] Feruglio, F., The chiral approach to the electroweak interactions, Int. J. Mod. Phys. A8 (1993) 4937–4972, [hep-ph/9301281].Google Scholar
[831] Bagger, J., Barger, V. D., Cheung, K.-M., Gunion, J. F., Han, T., Ladinsky, G. A., Rosenfeld, R., and Yuan, C. P., The strongly interacting W-W system: Gold plated modes, Phys. Rev. D49 (1994) 1246–1264, [hep-ph/9306256].Google Scholar
[832] Koulovassilopoulos, V. and Chivukula, R. S., The phenomenology of a nonstandard Higgs boson in W(L) W(L) scattering, Phys. Rev. D50 (1994) 3218–3234, [hep-ph/9312317].Google Scholar
[833] Wang, L.-M. and Wang, Q., Electroweak chiral Lagrangian for neutral Higgs boson, Chin. Phys. Lett. 25 (2008) 1984, [hep-ph/0605104].Google Scholar
[834] Grinstein, B. and Trott, M., A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D76 (2007) 073002, [arXiv:0704.1505].Google Scholar
[835] Alonso, R., Gavela, M. B., Merlo, L., Rigolin, S., and Yepes, J., The effective chiral Lagrangian for a light dynamical “Higgs particle,Phys. Lett. B722 (2013) 330–335, [arXiv:1212.3305]. [Erratum: Phys. Lett.B726,926(2013)].Google Scholar
[836] Contino, R., The Higgs as a composite Nambu-Goldstone boson, in Physics of the Large and the Small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, June 1–26, 2009, pp. 235–306, 2011. arXiv:1005.4269.Google Scholar
[837] Delgado, R. L., Dobado, A., and Llanes-Estrada, F. J., One-loop W L W L and Z L Z L scattering from the electroweak chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121, [arXiv:1311.5993].Google Scholar
[838] Buchalla, G., Cata, O., and Krause, C., Complete electroweak chiral Lagrangian with a light Higgs at NLO, Nucl. Phys. B880 (2014) 552–573, [arXiv:1307.5017]. [Erratum: Nucl. Phys.B913,475(2016)].Google Scholar
[839] Buchalla, G., Cata, O., and Krause, C., A systematic approach to the SILH Lagrangian, Nucl. Phys. B894 (2015) 602620, [arXiv:1412.6356].Google Scholar
[840] Buchalla, G., Cata, O., Celis, A., Knecht, M., and Krause, C., Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian, Nucl. Phys. B928 (2018) 93106, [arXiv:1710.06412].Google Scholar
[841] Alonso, R., Kanshin, K., and Saa, S., Renormalization group evolution of Higgs effective field theory, Phys. Rev. D97 (2018), no. 3 035010, [arXiv:1710.06848].Google Scholar
[842] Branco, G. C., Frere, J. M., and Gérard, J. M., The value of ɛ ′ /ɛ in models based on SU(2) L × SU(2) R × U(1), Nucl. Phys. B221 (1983) 317330.Google Scholar
[843] ETM Collaboration, Constantinou, M., Costa, M., Frezzotti, R., Lubicz, V., Martinelli, G., Meloni, D., Panagopoulos, H., and Simula, S., Kπ matrix elements of the chromomagnetic operator on the lattice, Phys. Rev. D97 (2018), no. 7 074501, [arXiv:1712.09824].Google Scholar
[844] Buras, A. J. and Gérard, J.-M., Kππ and Kπ matrix elements of the chromomagnetic operators from dual QCD, JHEP 07 (2018) 126, [arXiv:1803.08052].Google Scholar
[845] Bertolini, S., Eeg, J. O., and Fabbrichesi, M., Studying ε ′ /ε in the chiral quark model: γ 5 scheme independence and NLO hadronic matrix elements, Nucl. Phys. B449 (1995) 197–228, [hep-ph/9409437].Google Scholar
[846] Chen, C.-H. and Nomura, T., ɛ ′ /ɛ from charged-Higgs-induced gluonic dipole operators, Phys. Lett. B787 (2018) 182–187, [arXiv:1805.07522].Google Scholar
[847] Buras, A. J., The return of kaon flavour physics, Acta Phys. Polon. B49 (2018) 1043, [arXiv:1805.11096].Google Scholar
[848] Feruglio, F., Paradisi, P., and Sumensari, O., Implications of scalar and tensor explanations of R D(∗) , JHEP 11 (2018) 191, [arXiv:1806.10155].Google Scholar
[849] Becirevic, D., Dorsner, I., Fajfer, S., Kosnik, N., Faroughy, D. A., and Sumensari, O., Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D98 (2018), no. 5 055003, [arXiv:1806.05689].Google Scholar
[850] Blanke, M., Buras, A. J., and Recksiegel, S., Quark flavour observables in the littlest Higgs model with T-parity after LHC Run 1, Eur. Phys. J. C76 (2016), no. 4 182, [arXiv:1507.06316].Google Scholar
[851] Buras, A. J., New physics patterns in ε ′ /ε and ε K with implications for rare kaon decays and ΔM K , JHEP 04 (2016) 071, [arXiv:1601.00005].Google Scholar
[852] Buras, A. J. and De Fazio, F., ε ′ /ε in 331 models, JHEP 03 (2016) 010, [arXiv:1512.02869].Google Scholar
[853] Buras, A. J. and De Fazio, F., 331 models facing the tensions in ΔF = 2 processes with the impact on ε ′ /ε, B s μ + μ and BK μ + μ , JHEP 08 (2016) 115, [arXiv:1604.02344].Google Scholar
[854] Tanimoto, M. and Yamamoto, K., Probing SUSY with 10 TeV stop mass in rare decays and CP violation of kaon, PTEP 2016 (2016), no. 12 123B02, [arXiv:1603.07960].Google Scholar
[855] Kitahara, T., Nierste, U., and Tremper, P., Supersymmetric explanation of CP violation in Kππ decays, Phys. Rev. Lett. 117 (2016), no. 9 091802, [arXiv:1604.07400].Google Scholar
[856] Endo, M., Mishima, S., Ueda, D., and Yamamoto, K., Chargino contributions in light of recent ɛ ′ /ɛ, Phys. Lett. B762 (2016) 493497, [arXiv:1608.01444].Google Scholar
[857] Crivellin, A., D’Ambrosio, G., Kitahara, T., and Nierste, U., Kπνν in the MSSM in light of the ɛ K /ɛ K anomaly, Phys. Rev. D96 (2017), no. 1 015023, [arXiv:1703.05786].Google Scholar
[858] Endo, M., Goto, T., Kitahara, T., Mishima, S., Ueda, D., and Yamamoto, K., Gluino-mediated electroweak penguin with flavor-violating trilinear couplings, JHEP 04 (2018) 019, [arXiv:1712.04959].Google Scholar
[859] Chen, C.-H. and Nomura, T., Re(ɛ K /ɛ K ) and Kπν v̅ in a two-Higgs doublet model, JHEP 08 (2018) 145, [arXiv:1804.06017].Google Scholar
[860] Iguro, S. and Omura, Y., The direct CP violation in a general two Higgs doublet model, arXiv:1905.11778.Google Scholar
[861] Cirigliano, V., Dekens, W., J. de Vries, , and Mereghetti, E., An ε ′ improvement from right-handed currents, Phys. Lett. B767 (2017) 19, [arXiv:1612.03914].Google Scholar
[862] Alioli, S., Cirigliano, V., Dekens, W., J. de Vries, , and Mereghetti, E., Right-handed charged currents in the era of the large hadron collider, JHEP 05 (2017) 086, [arXiv:1703.04751].Google Scholar
[863] Haba, N., Umeeda, H., and Yamada, T., ɛ ′ /ɛ anomaly and neutron EDM in SU(2) L ×SU(2) R ×U(1) BL model with charge symmetry, JHEP 05 (2018) 052, [arXiv:1802.09903].Google Scholar
[864] Haba, N., Umeeda, H., and Yamada, T., Direct CP violation in Cabibbo-favored charmed meson decays and ɛ ′ /ɛ in SU(2) L × SU(2) R × U(1) BL Model, JHEP 10 (2018) 006, [arXiv:1806.03424].Google Scholar
[865] Matsuzaki, S., Nishiwaki, K., and Yamamoto, K., Simultaneous interpretation of K and B anomalies in terms of chiral-flavorful vectors, JHEP 11 (2018) 164, [arXiv:1806.02312].Google Scholar
[866] Chen, C.-H. and Nomura, T., ɛ K and ɛ ′ /ɛ in a diquark model, , JHEP 03 (2019) 009, [arXiv:1808.04097].Google Scholar
[867] Chen, C.-H. and Nomura, T., Left-handed color-sextet diquark in the kaon system, Phys. Rev. D99 (2019), no. 11 115006, [arXiv:1811.02315].Google Scholar
[868] Marzo, C., Marzola, L., and Raidal, M., Common explanation to the R K(∗), R D(∗) and ɛ ′ /ɛ anomalies in a 3HDM+ν R and connections to neutrino physics, arXiv:1901.08290.Google Scholar
[869] Matsuzaki, S., Nishiwaki, K., and Yamamoto, K., Simultaneous explanation of K and B anomalies in vectorlike compositeness, in 18th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2018) Corfu, Corfu, Greece, August 31–September 28, 2018, 2019. arXiv:1903.10823.Google Scholar
[870] Buras, A. J. and Girrbach, J., BSM models facing the recent LHCb data: A first look, Acta Phys. Polon. B43 (2012) 1427, [arXiv:1204.5064].Google Scholar
[871] Buras, A. J. and Buras, R., A lower bound on sin 2β from minimal flavor violation, Phys. Lett. B501 (2001) 223–230, [hep-ph/0008273].Google Scholar
[872] Blanke, M. and Buras, A. J., Lower bounds on ΔM s,d from constrained minimal flavour violation, JHEP 0705 (2007) 061, [hep-ph/0610037].Google Scholar
[873] Fermilab Lattice, MILC Collaboration, Bazavov, A. et al., B 0 (s) -mixing matrix elements from lattice QCD for the standard model and beyond, Phys. Rev. D93 (2016), no. 11 113016, [arXiv:1602.03560].Google Scholar
[874] Blanke, M. and Buras, A. J., Emerging ΔM d -anomaly from tree-level determinations of |V cb | and the angle γ , Eur. Phys. J. C79 (2019), no. 2 159, [arXiv:1812.06963].Google Scholar
[875] Gershon, T., ΔΓ d : A forgotten null test of the standard model, J. Phys. G38 (2011) 015007, [arXiv:1007.5135].Google Scholar
[876] Feldmann, T. and Mannel, T., Minimal flavour violation and beyond, JHEP 0702 (2007) 067, [hep-ph/0611095].Google Scholar
[877] Colangelo, G., Nikolidakis, E., and Smith, C., Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C59 (2009) 7598, [arXiv:0807.0801].Google Scholar
[878] Paradisi, P., Ratz, M., Schieren, R., and Simonetto, C., Running minimal flavor violation, Phys. Lett. B668 (2008) 202209, [arXiv:0805.3989].Google Scholar
[879] Mercolli, L. and Smith, C., EDM constraints on flavored CP-violating phases, Nucl. Phys. B817 (2009) 124, [arXiv:0902.1949].Google Scholar
[880] Feldmann, T., Jung, M., and Mannel, T., Sequential flavour symmetry breaking, Phys. Rev. D80 (2009) 033003, [arXiv:0906.1523].Google Scholar
[881] Kagan, A. L., Perez, G., Volansky, T., and Zupan, J., General minimal flavor violation, Phys. Rev. D80 (2009) 076002, [arXiv:0903.1794].Google Scholar
[882] Paradisi, P. and Straub, D. M., The SUSY CP problem and the MFV principle, Phys. Lett. B684 (2010) 147153, [arXiv:0906.4551].Google Scholar
[883] Isidori, G., B physics in the LHC era, arXiv:1001.3431.Google Scholar
[884] Nir, Y., Probing new physics with flavor physics (and probing flavor physics with new physics), in Prospects in Theoretical Physics (PiTP) Summer Program on The Standard Model and Beyond IAS, Princeton, NJ, June 16–27, 2007, 2007. arXiv:0708.1872.Google Scholar
[885] Isidori, G. and Straub, D. M., Minimal flavour violation and beyond, Eur. Phys. J. C72 (2012) 2103, [arXiv:1202.0464].Google Scholar
[886] Baek, S. and Ko, P., Probing SUSY induced CP violations at B factories, Phys. Rev. Lett. 83 (1999) 488–491, [hep-ph/9812229].Google Scholar
[887] Baek, S. and Ko, P., Effects of supersymmetric CP violating phases on BX s + and ɛ K , Phys. Lett. B462 (1999) 95–102, [hep-ph/9904283].Google Scholar
[888] Bartl, A., Gajdosik, T., Lunghi, E., Masiero, A., Porod, W., et al., General flavor blind MSSM and CP violation, Phys. Rev. D64 (2001) 076009, [hep-ph/0103324].Google Scholar
[889] Ellis, J., Lee, J. S., and Pilaftsis, A., B-meson observables in the maximally CP-violating MSSM with minimal flavour violation, Phys. Rev. D76 (2007) 115011, [arXiv:0708.2079].Google Scholar
[890] Altmannshofer, W., Buras, A., and Paradisi, P., Low energy probes of CP violation in a flavor blind MSSM, Phys. Lett. B669 (2008) 239245, [arXiv:0808.0707].Google Scholar
[891] Pich, A. and Tuzon, P., Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D80 (2009) 091702, [arXiv:0908.1554].Google Scholar
[892] Blum, K., Hochberg, Y., and Nir, Y., Implications of large dimuon CP asymmetry in Bd,s decays on minimal flavor violation with low tan β , JHEP 1009 (2010) 035, [arXiv:1007.1872].Google Scholar
[893] Dobrescu, B. A., Fox, P. J., and Martin, A., CP violation in B s mixing from heavy Higgs exchange, Phys. Rev. Lett. 105 (2010) 041801, [arXiv:1005.4238].Google Scholar
[894] Altmannshofer, W. and Carena, M., B meson mixing in effective theories of supersymmetric Higgs bosons, Phys. Rev. D85 (2012) 075006, [arXiv:1110.0843].Google Scholar
[895] Altmannshofer, W., Carena, M., Gori, S., and A. de la Puente, , Signals of CP violation beyond the MSSM in Higgs and flavor physics, Phys. Rev. D84 (2011) 095027, [arXiv:1107.3814].Google Scholar
[896] Buras, A. J., Carlucci, M. V., Gori, S., and Isidori, G., Higgs-mediated FCNCs: Natural flavour conservation vs. minimal flavour violation, JHEP 1010 (2010) 009, [arXiv:1005.5310].Google Scholar
[897] Branco, G., Ferreira, P., Lavoura, L., Rebelo, M., Sher, M., et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1102, [arXiv:1106.0034].Google Scholar
[898] Feldmann, T. and Mannel, T., Large top mass and non-linear representation of flavour symmetry, Phys. Rev. Lett. 100 (2008) 171601, [arXiv:0801.1802].Google Scholar
[899] Glashow, S. L. and Weinberg, S., Natural Conservation Laws for Neutral Currents, Phys. Rev. D15 (1977) 1958.Google Scholar
[900] Paschos, E., Diagonal neutral currents, Phys. Rev. D15 (1977) 1966.Google Scholar
[901] Branco, G. C., Grimus, W., and Lavoura, L., Relating the scalar flavor changing neutral couplings to the CKM matrix, Phys. Lett. B380 (1996) 119–126, [hep-ph/9601383].Google Scholar
[902] Joshipura, A. S. and Kodrani, B. P., Minimal flavour violations and tree level FCNC, Phys. Rev. D77 (2008) 096003, [arXiv:0710.3020].Google Scholar
[903] Botella, F. J., Branco, G. C., and Rebelo, M. N., Minimal flavour violation and multi-Higgs models, Phys. Lett. B687 (2010) 194200, [arXiv:0911.1753].Google Scholar
[904] Celis, A., Fuentes-Martin, J., Jung, M., and Serodio, H., Family nonuniversal Z models with protected flavor-changing interactions, Phys. Rev. D92 (2015), no. 1 015007, [arXiv:1505.03079].Google Scholar
[905] Alves, J. M., Botella, F. J., Branco, G. C., Cornet-Gomez, F., and Nebot, M., Controlled flavour changing neutral couplings in two Higgs doublet models, Eur. Phys. J. C77 (2017), no. 9 585, [arXiv:1703.03796].Google Scholar
[906] Nebot, M., Botella, F. J., and Branco, G. C., Vacuum induced CP violation generating a complex CKM matrix with controlled scalar FCNC, arXiv:1808.00493.Google Scholar
[907] Jung, M., Pich, A., and Tuzon, P., Charged-Higgs phenomenology in the aligned two-Higgs-doublet model, JHEP 1011 (2010) 003, [arXiv:1006.0470].Google Scholar
[908] Jung, M. and Pich, A., Electric dipole moments in two-Higgs-doublet models, JHEP 04 (2014) 076, [arXiv:1308.6283].Google Scholar
[909] Buras, A. J., Isidori, G., and Paradisi, P., EDMs versus CPV in B s,d mixing in two Higgs doublet models with MFV, Phys. Lett. B694 (2011) 402409, [arXiv:1007.5291].Google Scholar
[910] Barbieri, R., Isidori, G., Jones-Perez, J., Lodone, P., and Straub, D. M., U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C71 (2011) 1725, [arXiv:1105.2296].Google Scholar
[911] Barbieri, R., Campli, P., Isidori, G., Sala, F., and Straub, D. M., B-decay CP-asymmetries in SUSY with a U(2)3 flavour symmetry, Eur. Phys. J. C71 (2011) 1812, [arXiv:1108.5125].Google Scholar
[912] Barbieri, R., Buttazzo, D., Sala, F., and Straub, D. M., Flavour physics from an approximate U(2)3 symmetry, JHEP 1207 (2012) 181, [arXiv:1203.4218].Google Scholar
[913] Barbieri, R., Buttazzo, D., Sala, F., and Straub, D. M., Less minimal flavour violation, JHEP 1210 (2012) 040, [arXiv:1206.1327].Google Scholar
[914] Crivellin, A., Hofer, L., and Nierste, U., The MSSM with a softly broken U(2)3 flavor symmetry, PoS EPS-HEP2011 (2011) 145, [arXiv:1111.0246].Google Scholar
[915] Crivellin, A., Hofer, L., Nierste, U., and Scherer, D., Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D84 (2011) 035030, [arXiv:1105.2818].Google Scholar
[916] Crivellin, A. and Nierste, U., Supersymmetric renormalisation of the CKM matrix and new constraints on the squark mass matrices, Phys. Rev. D79 (2009) 035018, [arXiv:0810.1613].Google Scholar
[917] Buras, A. J. and Girrbach, J., On the correlations between flavour observables in minimal U(2)3 models, JHEP 1301 (2013) 007, [arXiv:1206.3878].Google Scholar
[918] Langacker, P., The physics of heavy Z ′ gauge bosons, Rev. Mod. Phys. 81 (2009) 11991228, [arXiv:0801.1345].Google Scholar
[919] Erler, J., Langacker, P., Munir, S., and Rojas, E. , Improved constraints on Z ′ bosons from electroweak precision data, JHEP 0908 (2009) 017, [arXiv:0906.2435].Google Scholar
[920] Blanke, M., Buras, A. J., Duling, B., Gemmler, K., and Gori, S., Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108, [arXiv:0812.3803].Google Scholar
[921] Blanke, M., Buras, A. J., Duling, B., Recksiegel, S., and Tarantino, C., FCNC processes in the littlest Higgs model with T-parity: A 2009 look, Acta Phys. Polon. B41 (2010) 657683, [arXiv:0906.5454].Google Scholar
[922] Bauer, M., Casagrande, S., Haisch, U., and Neubert, M., Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 1009 (2010) 017, [arXiv:0912.1625].Google Scholar
[923] Blanke, M., Buras, A. J., Recksiegel, S., and Tarantino, C., The littlest Higgs model with T-parity facing CP-violation in B s s mixing, arXiv:0805.4393.Google Scholar
[924] Blanke, M., Insights from the interplay of Kπνν and ɛ K on the new physics flavour structure, Acta Phys. Polon. B41 (2010) 127, [arXiv:0904.2528].Google Scholar
[925] Altmannshofer, W., Gori, S., Pospelov, M., and Yavin, I., Quark flavor transitions in L μ L τ models, Phys. Rev. D89 (2014) 095033, [arXiv:1403.1269].Google Scholar
[926] Crivellin, A., D’Ambrosio, G., and Heeck, J., Explaining hμ ± τ , BK μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μ L τ , Phys. Rev. Lett. 114 (2015) 151801, [arXiv:1501.00993].Google Scholar
[927] Crivellin, A., D’Ambrosio, G., and Heeck, J. , Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D91 (2015), no. 7 075006, [arXiv:1503.03477].Google Scholar
[928] Crivellin, A., Fuentes-Martin, J., Greljo, A., and Isidori, G., Lepton flavor non-universality in B decays from dynamical Yukawas, Phys. Lett. B766 (2017) 7785, [arXiv:1611.02703].Google Scholar
[929] Altmannshofer, W. and Yavin, I., Predictions for lepton flavor universality violation in rare B decays in models with gauged L μ L τ , Phys. Rev. D92 (2015), no. 7 075022, [arXiv:1508.07009].Google Scholar
[930] Fuyuto, K., Hou, W.-S., and Kohda, M., Z -induced FCNC decays of top, beauty, and strange quarks, Phys. Rev. D93 (2016), no. 5 054021, [arXiv:1512.09026].Google Scholar
[931] Chen, C.-H. and Nomura, T., Penguin bsℓ+ and B-meson anomalies in a gauged L μ L τ , Phys. Lett. B777 (2018) 420427, [arXiv:1707.03249].Google Scholar
[932] Falkowski, A., Nardecchia, M., and Ziegler, R., Lepton flavor non-universality in B-meson decays from a U(2) Flavor Model, JHEP 11 (2015) 173, [arXiv:1509.01249].Google Scholar
[933] Boucenna, S. M., Celis, A., Fuentes-Martin, J., Vicente, A., and Virto, J., Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B760 (2016) 214219, [arXiv:1604.03088].Google Scholar
[934] Boucenna, S. M., Celis, A., Fuentes-Martin, J., Vicente, A., and Virto, J., Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059, [arXiv:1608.01349].Google Scholar
[935] Alonso, R., Cox, P., Han, C., and Yanagida, T. T., Anomaly-free local horizontal symmetry and anomaly-full rare B-decays, Phys. Rev. D96 (2017), no. 7 071701, [arXiv:1704.08158].Google Scholar
[936] Ellis, J., Fairbairn, M., and Tunney, P., Anomaly-free models for flavour anomalies, Eur. Phys. J. C78 (2018), no. 3 238, [arXiv:1705.03447].Google Scholar
[937] Alonso, R., Cox, P., Han, C., and Yanagida, T. T., Flavoured B-L local symmetry and anomalous rare B decays, Phys. Lett. B774 (2017) 643648, [arXiv:1705.03858].Google Scholar
[938] Bonilla, C., Modak, T., Srivastava, R., and Valle, J. W. F., U(1) B3 −3L μ gauge symmetry as a simple description of bs anomalies, Phys. Rev. D98 (2018), no. 9 095002, [arXiv:1705.00915].Google Scholar
[939] Babu, K. S., Friedland, A., Machado, P. A. N., and Mocioiu, I., Flavor gauge models below the Fermi scale, JHEP 12 (2017) 096, [arXiv:1705.01822].Google Scholar
[940] Bian, L., Choi, S.-M., Y.-J. Kang, and H. M. Lee, A minimal flavored U(1) ′ for B-meson anomalies, Phys. Rev. D96 (2017), no. 7 075038, [arXiv:1707.04811].Google Scholar
[941] Tang, Y. and Wu, Y.-L., Flavor non-universal gauge interactions and anomalies in B-meson decays, Chin. Phys. C42 (2018), no. 3 033104, [arXiv:1705.05643].Google Scholar
[942] Cline, J. M. and Martin Camalich, J., B decay anomalies from nonabelian local horizontal symmetry, Phys. Rev. D96 (2017), no. 5 055036, [arXiv:1706.08510].Google Scholar
[943] Blanger, G., Delaunay, C., and Westhoff, S., A dark matter relic from muon anomalies, Phys. Rev. D92 (2015) 055021, [arXiv:1507.06660].Google Scholar
[944] Greljo, A., Isidori, G., and Marzocca, D., On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142, [arXiv:1506.01705].Google Scholar
[945] Bhattacharya, B., Datta, A., Guvin, J.-P., London, D., and Watanabe, R., Simultaneous explanation of the R K and R D(∗) puzzles: A model analysis, JHEP 01 (2017) 015, [arXiv:1609.09078].Google Scholar
[946] Chiang, C.-W., He, X.-G., Tandean, J., and Yuan, X.-B., R K(∗) and related bsℓ ̅ℓ anomalies in minimal flavor violation framework with Z ′ boson, Phys. Rev. D96 (2017), no. 11 115022, [arXiv:1706.02696].Google Scholar
[947] Datta, A., Kumar, J., Liao, J., and Marfatia, D., New light mediators for the R K and R K puzzles, Phys. Rev. D97 (2018), no. 11 115038, [arXiv:1705.08423].Google Scholar
[948] Di Chiara, S., Fowlie, A., Fraser, S., Marzo, C., Marzola, L., Raidal, M., and Spethmann, C., Minimal flavor-changing Z ′ models and muon g − 2 after the R K measurement, Nucl. Phys. B923 (2017) 245257, [arXiv:1704.06200].Google Scholar
[949] Altmannshofer, W., Chen, C.-Y., Bhupal Dev, P. S., and Soni, A., Lepton flavor violating Zexplanation of the muon anomalous magnetic moment, Phys. Lett. B762 (2016) 389398, [arXiv:1607.06832].Google Scholar
[950] Datta, A., Liao, J., and Marfatia, D., A light Z ′ for the R K puzzle and nonstandard neutrino interactions, Phys. Lett. B768 (2017) 265269, [arXiv:1702.01099].Google Scholar
[951] Sala, F. and Straub, D. M., A new light particle in B decays? Phys. Lett. B774 (2017) 205209, [arXiv:1704.06188].Google Scholar
[952] Altmannshofer, W., Baker, M. J., Gori, S., Harnik, R., Pospelov, M., Stamou, E., and Thamm, A., Light resonances and the low-q2 bin of R K , JHEP 03 (2018) 188, [arXiv:1711.07494].Google Scholar
[953] Di Luzio, L., Kirk, M., and Lenz, A., Updated B s -mixing constraints on new physics models for bsℓ + anomalies, Phys. Rev. D97 (2018), no. 9 095035, [arXiv:1712.06572].Google Scholar
[954] Di Luzio, L., Kirk, M., and Lenz, A., B s - s mixing interplay with B anomalies, in 10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17–21, 2018, 2018. arXiv:1811.12884.Google Scholar
[955] Allanach, B. C., Butterworth, J. M., and Corbett, T., Collider constraints on Z ′ models for neutral current B-anomalies, arXiv:1904.10954.Google Scholar
[956] Gauld, R., Goertz, F., and Haisch, U., On minimal Zexplanations of the BK μ + μ anomaly, Phys. Rev. D89 (2014) 015005, [arXiv:1308.1959].Google Scholar
[957] Altmannshofer, W., Gori, S., Martin-Albo, J., Sousa, A., and Wallbank, M., Neutrino tridents at DUNE, arXiv:1902.06765.Google Scholar
[958] Carena, M., Daleo, A., Dobrescu, B. A., and Tait, T. M. P., Zgauge bosons at the Tevatron, Phys. Rev. D70 (2004) 093009, [hep-ph/0408098].Google Scholar
[959] Ellis, J., Fairbairn, M., and Tunney, P., Anomaly-free dark matter models are not so simple, JHEP 08 (2017) 053, [arXiv:1704.03850].Google Scholar
[960] Allanach, B., Queiroz, F. S., Strumia, A., and Sun, S., Z models for the LHCb and g − 2 muon anomalies, Phys. Rev. D93 (2016), no. 5 055045, [arXiv:1511.07447]. [Erratum: Phys. Rev.D95,no.11,119902(2017)].Google Scholar
[961] Kahlhoefer, F., Schmidt-Hoberg, K., Schwetz, T., and Vogl, S., Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016, [arXiv:1510.02110].Google Scholar
[962] Ekstedt, A., Enberg, R., Ingelman, G., Löfgren, J., and Mandal, T., Constraining minimal anomaly free U(1) extensions of the standard model, JHEP 11 (2016) 071, [arXiv:1605.04855].Google Scholar
[963] Ismail, A., Keung, W.-Y., Tsao, K.-H., and Unwin, J., Axial vector Z and anomaly cancellation, Nucl. Phys. B918 (2017) 220244, [arXiv:1609.02188].Google Scholar
[964] Popov, O. and White, G. A., One leptoquark to unify them? Neutrino masses and unification in the light of (g − 2) μ , R D() and R K anomalies, Nucl. Phys. B923 (2017) 324338, [arXiv:1611.04566].Google Scholar
[965] Allanach, B. C., Davighi, J., and Melville, S., An anomaly-free atlas: Charting the space of flavour-dependent gauged U(1) extensions of the standard model, JHEP 02 (2019) 082, [arXiv:1812.04602].Google Scholar
[966] Allanach, B. C. and Davighi, J., Third family hypercharge model for R K(∗) and aspects of the fermion mass problem, JHEP 12 (2018) 075, [arXiv:1809.01158].Google Scholar
[967] Ishiwata, K., Ligeti, Z., and Wise, M. B., New vector-like fermions and flavor physics, JHEP 10 (2015) 027, [arXiv:1506.03484].Google Scholar
[968] Pati, J. C. and Salam, A., Lepton number as the fourth color, Phys. Rev. D10 (1974) 275–289. [Erratum: Phys. Rev.D11,703(1975)].Google Scholar
[969] Mohapatra, R. N. and Pati, J. C., A natural left-right symmetry, Phys. Rev. D11 (1975) 2558.Google Scholar
[970] Mohapatra, R. N. and Pati, J. C., Left-right gauge symmetry and an isoconjugate model of CP violation, Phys. Rev. D11 (1975) 566571.Google Scholar
[971] Senjanovic, G. and Mohapatra, R. N., Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D12 (1975) 1502.Google Scholar
[972] Senjanovic, G., Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B153 (1979) 334.Google Scholar
[973] Mohapatra, R. N., Paige, F. E., and Sidhu, D. P., Symmetry breaking and naturalness of parity conservation in weak neutral currents in left-right symmetric gauge theories, Phys. Rev. D17 (1978) 2462.Google Scholar
[974] Chang, D., A minimal model of spontaneous CP violation with the gauge group SU(2) L × SU(2) R × U(1) BL , Nucl. Phys. B214 (1983) 435.Google Scholar
[975] Harari, H. and Leurer, M., Left-right symmetry and the mass scale of a possible right-handed weak boson, Nucl. Phys. B233 (1984) 221.Google Scholar
[976] Kiers, K., Kolb, J., Lee, J., Soni, A., and Wu, G.-H., Ubiquitous CP violation in a top inspired left-right model, Phys. Rev. D66 (2002) 095002, [hep-ph/0205082].Google Scholar
[977] Ecker, G. and Grimus, W., ɛ, ɛin a model with spontaneous P and CP violation, Phys. Lett. B153 (1985) 279–285.Google Scholar
[978] Frere, J. M. et al., K 0 0 in the SU(2) L × SU(2) R × U(1) model of CP violation, Phys. Rev. D46 (1992) 337353.Google Scholar
[979] Barenboim, G., Bernabeu, J., and Raidal, M., Spontaneous CP-violation in the left-right model and the kaon system, Nucl. Phys. B478 (1996) 527–543, [hep-ph/9608450].Google Scholar
[980] Mohapatra, R. N., Senjanovic, G., and Tran, M. D., Strangeness changing processes and the limit on the right-handed gauge boson mass, Phys. Rev. D28 (1983) 546.Google Scholar
[981] Zhang, Y., An, H., Ji, X., and Mohapatra, R. N., General CP violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B802 (2008) 247279, [arXiv:0712.4218].Google Scholar
[982] Ball, P., Frere, J. M., and Matias, J., Anatomy of mixing-induced CP asymmetries in left-right-symmetric models with spontaneous CP violation, Nucl. Phys. B572 (2000) 3–35, [hep-ph/9910211].Google Scholar
[983] Langacker, P. and Uma Sankar, S., Bounds on the mass of W R and the W L W R mixing angle ξ in general SU(2) L × SU(2) R × U(1) models, Phys. Rev. D40 (1989) 15691585.Google Scholar
[984] Barenboim, G., Bernabeu, J., Prades, J., and Raidal, M., Constraints on the W R mass and CP violation in left-right models, Phys. Rev. D55 (1997) 4213–4221, [hep-ph/9611347].Google Scholar
[985] Zhang, Y., An, H., Ji, X., and Mohapatra, R. N., Right-handed quark mixings in minimal left-right symmetric model with general CP violation, Phys. Rev. D76 (2007) 091301, [arXiv:0704.1662].Google Scholar
[986] Maiezza, A., Nemevsek, M., Nesti, F., and Senjanovic, G., Left-right symmetry at LHC, Phys. Rev. D82 (2010) 055022, [arXiv:1005.5160].Google Scholar
[987] Hsieh, K., Schmitz, K., Yu, J.-H., and Yuan, C. P., Global analysis of general SU(2) ×SU(2) ×U(1) models with precision data, Phys. Rev. D82 (2010) 035011, [arXiv:1003.3482].Google Scholar
[988] Crivellin, A. and Mercolli, L., BX d γ and constraints on new physics, Phys. Rev. D84 (2011) 114005, [arXiv:1106.5499].Google Scholar
[989] Mohapatra, R. N., Yan, G., and Zhang, Y., Ameliorating Higgs induced flavor constraints on TeV scale W R , arXiv:1902.08601.Google Scholar
[990] Crivellin, A., Effects of right-handed charged currents on the determinations of |V ub | and |V cb |, Phys. Rev. D81 (2010) 031301, [arXiv:0907.2461].Google Scholar
[991] Chen, C.-H. and Nam, S.-H. , Left-right mixing on leptonic and semileptonic bu decays, Phys. Lett. B666 (2008) 462466, [arXiv:0807.0896].Google Scholar
[992] Feger, R., Mannel, T., Klose, V., Lacker, H., and Luck, T., Limit on a right-handed admixture to the weak bc current from semileptonic decays, Phys. Rev. D82 (2010) 073002, [arXiv:1003.4022].Google Scholar
[993] Senjanovi, G. and Tello, V., Right handed quark mixing in left-right symmetric theory, Phys. Rev. Lett. 114 (2015), no. 7 071801, [arXiv:1408.3835].Google Scholar
[994] Babu, K. S., Mohapatra, R. N., and Dutta, B., A theory of R(D , D) anomaly with right-handed currents, JHEP 01 (2019) 168, [arXiv:1811.04496].Google Scholar
[995] Crivellin, A., Kokulu, A., and Greub, C., Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D87 (2013) 094031, [arXiv:1303.5877].Google Scholar
[996] Nierste, U., Trine, S., and Westhoff, S., Charged-Higgs effects in a new BDτν differential decay distribution, Phys. Rev. D78 (2008) 015006, [arXiv:0801.4938].Google Scholar
[997] Crivellin, A., Greub, C., and Kokulu, A., Explaining BDτν, BD τν and Bτν in a 2HDM of type III, Phys. Rev. D86 (2012) 054014, [arXiv:1206.2634].Google Scholar
[998] Ko, P., Omura, Y., and Yu, C., BD (∗) τν and Bτν in chiral U(1)’ models with flavored multi Higgs doublets, JHEP 1303 (2013) 151, [arXiv:1212.4607].Google Scholar
[999] Crivellin, A., Greub, C., and Kokulu, A., Flavour-violation in two-Higgs-doublet models, PoS EPS-HEP2013 (2013) 338, [arXiv:1309.4806].Google Scholar
[1000] Buras, A. J., Minimal flavour violation and beyond: Towards a flavour code for short distance dynamics, Acta Phys. Polon. B41 (2010) 24872561, [arXiv:1012.1447].Google Scholar
[1001] Buras, A. J., Poschenrieder, A., Uhlig, S., and Bardeen, W. A., Rare K and B decays in the littlest Higgs model without T-parity, JHEP 11 (2006) 062, [hep-ph/0607189].Google Scholar
[1002] Buras, A. J., Duling, B., Feldmann, T., Heidsieck, T., Promberger, C., et al., Patterns of flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 1009 (2010) 106, [arXiv:1002.2126].Google Scholar
[1003] Buras, A. J., Nagai, M., and Paradisi, P., Footprints of SUSY GUTs in flavour physics, JHEP 1105 (2011) 005, [arXiv:1011.4853].Google Scholar
[1004] Albrecht, M., Altmannshofer, W., Buras, A. J., Guadagnoli, D., and Straub, D. M., Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes, JHEP 10 (2007) 055, [arXiv:0707.3954].Google Scholar
[1005] Buras, A. J., Spranger, M., and Weiler, A., The impact of universal extra dimensions on the unitarity triangle and rare K and B decays, Nucl. Phys. B660 (2003) 225–268, [hep-ph/0212143].Google Scholar
[1006] Buras, A. J., Poschenrieder, A., Spranger, M., and Weiler, A., The impact of universal extra dimensions on BX s γ, BX s gluon, BX s μ + μ , K L π 0 e + e , and ε ′ /ε, Nucl. Phys. B678 (2004) 455–490, [hep-ph/0306158].Google Scholar
[1007] Blanke, M., Buras, A. J., Duling, B., Gori, S., and Weiler, A., ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001, [arXiv:0809.1073].Google Scholar
[1008] Albrecht, M. E., Blanke, M., Buras, A. J., Duling, B., and Gemmler, K., Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064, [arXiv:0903.2415].Google Scholar
[1009] Cacciapaglia, G. et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006, [arXiv:0709.1714].Google Scholar
[1010] Csaki, C., Falkowski, A., and Weiler, A., A simple flavor protection for RS, Phys. Rev. D80 (2009) 016001, [arXiv:0806.3757].Google Scholar
[1011] Casagrande, S., Goertz, F., Haisch, U., Neubert, M., and Pfoh, T., Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094, [arXiv:0807.4937].Google Scholar
[1012] Buras, A. J., Carlucci, M. V., Merlo, L., and Stamou, E., Phenomenology of a gauged SU(3)3 flavour model, JHEP 1203 (2012) 088, [arXiv:1112.4477].Google Scholar
[1013] Buras, A. J., Grojean, C., Pokorski, S., and Ziegler, R., FCNC effects in a minimal theory of fermion masses, JHEP 1108 (2011) 028, [arXiv:1105.3725].Google Scholar
[1014] Niehoff, C., Stangl, P., and Straub, D. M., Violation of lepton flavour universality in composite Higgs models, Phys. Lett. B747 (2015) 182186, [arXiv:1503.03865].Google Scholar
[1015] Niehoff, C., Stangl, P., and Straub, D. M., Direct and indirect signals of natural composite Higgs models, JHEP 01 (2016) 119, [arXiv:1508.00569].Google Scholar
[1016] Sannino, F., Stangl, P., Straub, D. M., and Thomsen, A. E., Flavor physics and flavor anomalies in minimal fundamental partial compositeness, Phys. Rev. D97 (2018), no. 11 115046, [arXiv:1712.07646].Google Scholar
[1017] Stangl, P. P., Direct constraints, flavor physics, and flavor anomalies in composite Higgs models. PhD thesis, Munich, Tech. U., 2018. arXiv:1811.11750.Google Scholar
[1018] Pisano, F. and Pleitez, V., An SU(3) x U(1) model for electroweak interactions, Phys. Rev. D46 (1992) 410–417, [hep-ph/9206242].Google Scholar
[1019] Frampton, P. H., Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992) 28892891.Google Scholar
[1020] Diaz, R. A., Martinez, R., and Ochoa, F., SU(3) c ×SU(3) L ×U(1) X models for beta arbitrary and families with mirror fermions, Phys. Rev. D72 (2005) 035018, [hep-ph/0411263].Google Scholar
[1021] Gauld, R., Goertz, F., and Haisch, U., An explicit Z’-boson explanation of the BK μ + μ anomaly, JHEP 1401 (2014) 069, [arXiv:1310.1082].Google Scholar
[1022] HSue, L. T. and Ninh, L. D., The simplest 3-3-1 model, Mod. Phys. Lett. A31 (2016), no. 10 1650062, [arXiv:1510.00302].Google Scholar
[1023] Carcamo Hernandez, A., Martinez, R., and Ochoa, F., Z and Z’ decays with and without FCNC in 331 models, Phys. Rev. D73 (2006) 035007, [hep-ph/0510421].Google Scholar
[1024] Huong, D. T., Dinh, D. N., Thien, L. D., and F Van Dong, , Dark matter and flavor changing in the flipped 3-3-1 model, arXiv:1906.05240.Google Scholar
[1025] Nir, Y. and Silverman, D. J., Z mediated flavor changing neutral currents and their implications for CP asymmetries in B 0 decays, Phys. Rev. D42 (1990) 14771484.Google Scholar
[1026] Branco, G. C., Morozumi, T., Parada, P. A., and Rebelo, M. N., CP asymmetries in B 0 decays in the presence of flavor changing neutral currents, Phys. Rev. D48 (1993) 11671175.Google Scholar
[1027] Barenboim, G., Botella, F. J., and Vives, O., Constraining models with vector-like fermions from FCNC in K and B physics, Nucl. Phys. B613 (2001) 285–305, [hep-ph/0105306].Google Scholar
[1028] Buras, A. J., Duling, B., and Gori, S., The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 0909 (2009) 076, [arXiv:0905.2318].Google Scholar
[1029] Botella, F., Branco, G., and Nebot, M., The hunt for new physics in the flavour sector with up vector-like quarks, JHEP 1212 (2012) 040, [arXiv:1207.4440].Google Scholar
[1030] Fajfer, S., Greljo, A., Kamenik, J. F., and Mustac, I., Light Higgs and vector-like quarks without prejudice, JHEP 07 (2013) 155, [arXiv:1304.4219].Google Scholar
[1031] Buras, A. J., Girrbach, J., and Ziegler, R., Particle-antiparticle mixing, CP violation and rare K and B decays in a minimal theory of fermion masses, JHEP 1304 (2013) 168, [arXiv:1301.5498].Google Scholar
[1032] Alok, A. K., Banerjee, S., Kumar, D., Sankar, S. U., and London, D., New-physics signals of a model with a vector-singlet up-type quark, Phys. Rev. D92 (2015) 013002, [arXiv:1504.00517].Google Scholar
[1033] Barducci, D., Fabbrichesi, M., Nieto, C. M., Percacci, R., and Skrinjar, V., In search of a UV completion of the standard model 378,000 models that don’t work, JHEP 11 (2018) 057, [arXiv:1807.05584].Google Scholar
[1034] Dermisek, R. and Raval, A., Explanation of the muon g-2 anomaly with vectorlike leptons and its implications for Higgs decays, Phys. Rev. D88 (2013) 013017, [arXiv:1305.3522].Google Scholar
[1035] Aristizabal Sierra, D., Staub, F., and Vicente, A., Shedding light on the b → s anomalies with a dark sector, Phys. Rev. D92 (2015), no. 1 015001, [arXiv:1503.06077].Google Scholar
[1036] Altmannshofer, W., Carena, M., and Crivellin, A., L μ L τ theory of Higgs flavor violation and (g − 2) μ , Phys. Rev. D94 (2016), no. 9 095026, [arXiv:1604.08221].Google Scholar
[1037] Kowalska, K. and Sessolo, E. M., Expectations for the muon g-2 in simplified models with dark matter, JHEP 09 (2017) 112, [arXiv:1707.00753].Google Scholar
[1038] Darm, L., Kowalska, K., Roszkowski, L., and Sessolo, E. M., Flavor anomalies and dark matter in SUSY with an extra U(1), JHEP 10 (2018) 052, [arXiv:1806.06036].Google Scholar
[1039] Falkowski, A., Straub, D. M., and Vicente, A., Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092, [arXiv:1312.5329].Google Scholar
[1040] Kawamura, J., Raby, S., and Trautner, A., Complete vector-like fourth family and new U(1) ′ for muon anomalies, arXiv:1906.11297.Google Scholar
[1041] Buchmüller, W., Rückl, R., and Wyler, D., Leptoquarks in lepton-quark collisions, Phys. Lett. B191 (1987) 442–448. [Erratum: Phys. Lett.B448,320(1999)].Google Scholar
[1042] Davies, A. J. and He, X.-G., Tree level scalar fermion interactions consistent with the symmetries of the standard model, Phys. Rev. D43 (1991) 225235.Google Scholar
[1043] Davidson, S., Bailey, D. C., and Campbell, B. A., Model independent constraints on leptoquarks from rare processes, Z. Phys. C61 (1994) 613–644, [hep-ph/9309310].Google Scholar
[1044] Dorsner, I., Fajfer, S., Greljo, A., Kamenik, J. F., and Kosnik, N., Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 168, [arXiv:1603.04993].Google Scholar
[1045] Košnik, N., Model independent constraints on leptoquarks from bsℓ + processes, Phys. Rev. D86 (2012) 055004, [arXiv:1206.2970].Google Scholar
[1046] Dorsner, I., Fajfer, S., and Greljo, A., Cornering scalar leptoquarks at LHC, JHEP 10 (2014) 154, [arXiv:1406.4831].Google Scholar
[1047] Becirevic, D., Fajfer, S., Kosnik, N., and Sumensari, O., Leptoquark model to explain the B-physics anomalies, R K and R D , Phys. Rev. D94 (2016), no. 11 115021, [arXiv:1608.08501].Google Scholar
[1048] Becirevic, D., Kosnik, N., Sumensari, O., and Zukanovich Funchal, R., Palatable leptoquark scenarios for lepton flavor violation in exclusive bsℓ 1 2 modes, JHEP 11 (2016) 035, [arXiv:1608.07583].Google Scholar
[1049] Angelescu, A., Becirevic, D., Faroughy, D. A., and Sumensari, O., Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP 10 (2018) 183, [arXiv:1808.08179].Google Scholar
[1050] Arnold, J. M., Fornal, B., and Wise, M. B., Phenomenology of scalar leptoquarks, Phys. Rev. D88 (2013) 035009, [arXiv:1304.6119].Google Scholar
[1051] Hirsch, M., Klapdor-Kleingrothaus, H. V., and Kovalenko, S. G., New low-energy leptoquark interactions, Phys. Lett. B378 (1996) 17–22, [hep-ph/9602305].Google Scholar
[1052] Crivellin, A., Müller, D., and Ota, T., Simultaneous explanation of R(D (∗)) and b + μ : The last scalar leptoquarks standing, JHEP 09 (2017) 040, [arXiv:1703.09226].Google Scholar
[1053] Dorsner, I., Fajfer, S., Faroughy, D. A., and N. Kosnik, , The role of the S 3 GUT leptoquark in flavor universality and collider searches, arXiv:1706.07779. [JHEP10,188(2017)].Google Scholar
[1054] Denner, A., Eck, H., Hahn, O., and Kublbeck, J., Feynman rules for fermion number violating interactions, Nucl. Phys. B387 (1992) 467481.Google Scholar
[1055] Baker, M. J., Fuentes-Martin, J., Isidori, G., and König, M., High-p T signatures in vector-leptoquark models, arXiv:1901.10480.Google Scholar
[1056] Becirevic, D. and Sumensari, O., A leptoquark model to accommodate R exp K < R SM K and R exp K < R SM K , JHEP 08 (2017) 104, [arXiv:1704.05835].Google Scholar
[1057] Bauer, M. and Neubert, M., Minimal Leptoquark Explanation for the R D(∗), R K , and (g−2) g Anomalies, Phys. Rev. Lett. 116 (2016), no. 14 141802, [arXiv:1511.01900].Google Scholar
[1058] Chauhan, B., Kindra, B., and Narang, A., Discrepancies in simultaneous explanation of flavor anomalies and IceCube PeV events using leptoquarks, Phys. Rev. D97 (2018), no. 9 095007, [arXiv:1706.04598].Google Scholar
[1059] IceCube Collaboration, Aartsen, M. G. et al., Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D95 (2017), no. 11 112002, [arXiv:1702.05160].Google Scholar
[1060] Dorsner, I., Fajfer, S., and Patra, M., A comparative study of the S 1 and U 1 leptoquark effects at IceCube, arXiv:1906.05660.Google Scholar
[1061] Gripaios, B., Nardecchia, M., and Renner, S. A., Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006, [arXiv:1412.1791].Google Scholar
[1062] I. de Medeiros Varzielas, and Hiller, G., Clues for flavor from rare lepton and quark decays, JHEP 06 (2015) 072, [arXiv:1503.01084].Google Scholar
[1063] Fajfer, S. and Kosnik, N., Vector leptoquark resolution of R K and R D(∗) puzzles, Phys. Lett. B755 (2016) 270274, [arXiv:1511.06024].Google Scholar
[1064] Barbieri, R., Isidori, G., Pattori, A., and Senia, F., Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C76 (2016), no. 2 67, [arXiv:1512.01560].Google Scholar
[1065] Cox, P., Kusenko, A., Sumensari, O., and Yanagida, T. T., SU(5) Unification with TeV-scale leptoquarks, JHEP 03 (2017) 035, [arXiv:1612.03923].Google Scholar
[1066] Hiller, G. and Schmaltz, M., Diagnosing lepton-nonuniversality in b → sℓℓ , JHEP 02 (2015) 055, [arXiv:1411.4773].Google Scholar
[1067] Faroughy, D. A., Greljo, A., and Kamenik, J. F., Confronting lepton flavor universality violation in B decays with high-p T tau lepton searches at LHC, Phys. Lett. B764 (2017) 126134, [arXiv:1609.07138].Google Scholar
[1068] Coluccio Leskow, E., D’Ambrosio, G., Crivellin, A., and Muller, D., (g − 2) μ , lepton flavor violation, and Z decays with leptoquarks: Correlations and future prospects, Phys. Rev. D95 (2017), no. 5 055018, [arXiv:1612.06858].Google Scholar
[1069] Cai, Y., Gargalionis, J., Schmidt, M. A., and Volkas, R. R., Reconsidering the one leptoquark solution: Flavor anomalies and neutrino mass, JHEP 10 (2017) 047, [arXiv:1704.05849].Google Scholar
[1070] Mandal, T., Mitra, S., and Raz, S., R D(∗) motivated S1 leptoquark scenarios: Impact of interference on the exclusion limits from LHC data, Phys. Rev. D99 (2019), no. 5 055028, [arXiv:1811.03561].Google Scholar
[1071] Catá, O. and Mannel, T., Linking lepton number violation with B anomalies, arXiv:1903.01799.Google Scholar
[1072] Popov, O., Schmidt, M. A., and White, G., R 2 as a single leptoquark solution to R D(∗) and R K(∗), arXiv:1905.06339.Google Scholar
[1073] Becirevic, D., Fajfer, S., and Kosnik, N., Lepton flavor nonuniversality in b → sℓ + processes, Phys. Rev. D92 (2015), no. 1 014016, [arXiv:1503.09024].Google Scholar
[1074] Sahoo, S. and Mohanta, R., Leptoquark effects on b → sv̅v and B → Kl + l decay processes, New J. Phys. 18 (2016), no. 1 013032, [arXiv:1509.06248].Google Scholar
[1075] Sahoo, S. and Mohanta, R., Study of the rare semileptonic decays B 0 dK l+ l in scalar leptoquark model, Phys. Rev. D93 (2016), no. 3 034018, [arXiv:1507.02070].Google Scholar
[1076] Dekens, W., de Vries, J., Jung, M., and Vos, K. K., The phenomenology of electric dipole moments in models of scalar leptoquarks, JHEP 01 (2019) 069, [arXiv:1809.09114].Google Scholar
[1077] Chauhan, B. and Kindra, B., Invoking chiral vector leptoquark to explain LFU violation in B Decays, arXiv:1709.09989.Google Scholar
[1078] Alok, A. K., Kumar, D., Kumar, J., and Sharma, R., Lepton flavor non-universality in the B-sector: A global analyses of various new physics models, arXiv:1704.07347.Google Scholar
[1079] Sahoo, S. and Mohanta, R., Impact of vector leptoquark on B̅ → K̅ l + l anomalies, J. Phys. G45 (2018), no. 8 085003, [arXiv:1806.01048].Google Scholar
[1080] Calibbi, L., Crivellin, A., and Li, T., Model of vector leptoquarks in view of the B-physics anomalies, Phys. Rev. D98 (2018), no. 11 115002, [arXiv:1709.00692].Google Scholar
[1081] Di Luzio, L., Greljo, A., and Nardecchia, M., Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D96 (2017), no. 11 115011, [arXiv:1708.08450].Google Scholar
[1082] Bordone, M., Cornella, C., Fuentes-Martin, J., and Isidori, G., A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B779 (2018) 317323, [arXiv:1712.01368].Google Scholar
[1083] Barbieri, R., Murphy, C. W., and Senia, F., B-decay anomalies in a composite leptoquark model, Eur. Phys. J. C77 (2017), no. 1 8, [arXiv:1611.04930].Google Scholar
[1084] Biswas, A., Shaw, A., and Swain, A. K., Collider signature of V 2 Leptoquark with bs flavour observables, arXiv:1811.08887.Google Scholar
[1085] Sahoo, S., Mohanta, R., and Giri, A. K., Explaining the R K and R D(∗) anomalies with vector leptoquarks, Phys. Rev. D95 (2017), no. 3 035027, [arXiv:1609.04367].Google Scholar
[1086] Camargo-Molina, J. E., Celis, A., and Faroughy, D. A., Anomalies in bottom from new physics in top, Phys. Lett. B784 (2018) 284293, [arXiv:1805.04917].Google Scholar
[1087] Crivellin, A., Müller, D., Signer, A., and Ulrich, Y., Correlating lepton flavor universality violation in B decays with μ → eγ using leptoquarks, Phys. Rev. D97 (2018), no. 1 015019, [arXiv:1706.08511].Google Scholar
[1088] Greljo, A. and Marzocca, D., High-p T dilepton tails and flavor physics, Eur. Phys. J. C77 (2017), no. 8 548, [arXiv:1704.09015].Google Scholar
[1089] Diaz, B., Schmaltz, M., and Zhong, Y.-M., The leptoquark hunters guide: Pair production, JHEP 10 (2017) 097, [arXiv:1706.05033].Google Scholar
[1090] Hiller, G., Loose, D., and Nisandzic, I., Flavorful leptoquarks at hadron colliders, Phys. Rev. D97 (2018), no. 7 075004, [arXiv:1801.09399].Google Scholar
[1091] Bansal, S., Capdevilla, R. M., Delgado, A., Kolda, C., Martin, A., and Raj, N., Hunting leptoquarks in monolepton searches, Phys. Rev. D98 (2018), no. 1 015037, [arXiv:1806.02370].Google Scholar
[1092] Schmaltz, M. and Zhong, Y.-M., The leptoquark hunters guide: Large coupling, JHEP 01 (2019) 132, [arXiv:1810.10017].Google Scholar
[1093] Greljo, A., Martin Camalich, J., and Ruiz-lvarez, J. D., Mono-τ signatures at the LHC constrain explanations of B-decay anomalies, Phys. Rev. Lett. 122 (2019), no. 13 131803, [arXiv:1811.07920].Google Scholar
[1094] Assad, N., Fornal, B., and Grinstein, B., Baryon number and lepton universality violation in leptoquark and diquark models, Phys. Lett. B777 (2018) 324331, [arXiv:1708.06350].Google Scholar
[1095] Bordone, M., Cornella, C., Fuentes-Martn, J., and Isidori, G., Low-energy signatures of the PS3 model: From B-physics anomalies to LFV, JHEP 10 (2018) 148, [arXiv:1805.09328].Google Scholar
[1096] Barbieri, R. and Tesi, A., B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C78 (2018), no. 3 193, [arXiv:1712.06844].Google Scholar
[1097] Di Luzio, L., Fuentes-Martin, J., Greljo, A., Nardecchia, M., and Renner, S., Maximal flavour violation: A Cabibbo mechanism for leptoquarks, JHEP 11 (2018) 081, [arXiv:1808.00942].Google Scholar
[1098] Marzocca, D., Addressing the B-physics anomalies in a fundamental composite Higgs model, JHEP 07 (2018) 121, [arXiv:1803.10972].Google Scholar
[1099] Greljo, A. and Stefanek, B. A., Third family quarklepton unification at the TeV scale, Phys. Lett. B782 (2018) 131138, [arXiv:1802.04274].Google Scholar
[1100] Blanke, M. and Crivellin, A., B meson anomalies in a Pati-Salam model within the Randall-Sundrum background, Phys. Rev. Lett. 121 (2018), no. 1 011801, [arXiv:1801.07256].Google Scholar
[1101] Fornal, B., Gadam, S. A., and Grinstein, B., Left-right SU(4) vector leptoquark model for flavor anomalies, Phys. Rev. D99 (2019), no. 5 055025, [arXiv:1812.01603].Google Scholar
[1102] Trifinopoulos, S., Revisiting R-parity violating interactions as an explanation of the B-physics anomalies, Eur. Phys. J. C78 (2018), no. 10 803, [arXiv:1807.01638].Google Scholar
[1103] Faber, T., Hudec, M., Malinsk, M., Meinzinger, P., Porod, W., and Staub, F., A unified leptoquark model confronted with lepton non-universality in B-meson decays, Phys. Lett. B787 (2018) 159166, [arXiv:1808.05511].Google Scholar
[1104] Heeck, J. and Teresi, D., Pati-Salam explanations of the B-meson anomalies, JHEP 12 (2018) 103, [arXiv:1808.07492].Google Scholar
[1105] Georgi, H. and Nakai, Y., Diphoton resonance from a new strong force, Phys. Rev. D94 (2016), no. 7 075005, [arXiv:1606.05865].Google Scholar
[1106] Bordone, M., Isidori, G., and Trifinopoulos, S., Semileptonic B-physics anomalies: A general EFT analysis within U(2) n flavor symmetry, Phys. Rev. D96 (2017), no. 1 015038, [arXiv:1702.07238].Google Scholar
[1107] Cornella, C., Fuentes-Martin, J., and Isidori, G., Revisiting the vector leptoquark explanation of the B-physics anomalies, arXiv:1903.11517.Google Scholar
[1108] Bernigaud, J., de Medeiros Varzielas, I., and Talbert, J., Finite family groups for fermionic and leptoquark mixing patterns, arXiv:1906.11270.Google Scholar
[1109] Da Rold, L. and Lamagna, F., A vector leptoquark for the B-physics anomalies from a composite GUT, arXiv:1906.11666.Google Scholar
[1110] Das, D., Hati, C., Kumar, G., and Mahajan, N., Towards a unified explanation of R D(∗), R K and (g − 2) μ anomalies in a left-right model with leptoquarks, Phys. Rev. D94 (2016) 055034, [arXiv:1605.06313].Google Scholar
[1111] Chen, C.-H., Nomura, T., and Okada, H., Excesses of muon g − 2, R D(∗), and RK in a leptoquark model, Phys. Lett. B774 (2017) 456464, [arXiv:1703.03251].Google Scholar
[1112] Cornella, C., Feruglio, F., and Paradisi, P., Low-energy effects of lepton flavour universality violation, JHEP 11 (2018) 012, [arXiv:1803.00945].Google Scholar
[1113] Aloni, D., Dery, A., Frugiuele, C., and Nir, Y., Testing minimal flavor violation in leptoquark models of the R K(∗) anomaly, JHEP 11 (2017) 109, [arXiv:1708.06161].Google Scholar
[1114] Bansal, S., Capdevilla, R. M., and Kolda, C., Constraining the minimal flavor violating leptoquark explanation of the R D(∗) anomaly, Phys. Rev. D99 (2019), no. 3 035047, [arXiv:1810.11588].Google Scholar
[1115] Muon G-2 Collaboration, Bennett, G. W. et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D73 (2006) 072003, [hep-ex/0602035].Google Scholar
[1116] Kuno, Y. and Okada, Y., Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151–202, [hep-ph/9909265].Google Scholar
[1117] Raidal, M. et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C57 (2008) 13182, [arXiv:0801.1826].Google Scholar
[1118] Hewett, J., Weerts, H., Brock, R., Butler, J., Casey, B., et al., Fundamental physics at the intensity frontier, arXiv:1205.2671.Google Scholar
[1119] Jegerlehner, F., The anomalous magnetic moment of the muon, Springer Tracts Mod. Phys. 274 (2017) pp.1693.Google Scholar
[1120] Engel, J., Ramsey-Musolf, M. J., and van Kolck, U., Electric dipole moments of nucleons, nuclei, and atoms: The Standard Model and Beyond, Prog. Part. Nucl. Phys. 71 (2013) 2174, [arXiv:1303.2371].Google Scholar
[1121] Bernstein, R. H. and Cooper, P. S., Charged lepton flavor violation: An experimenter’s guide, Phys. Rept. 532 (2013) 2764, [arXiv:1307.5787].Google Scholar
[1122] Hisano, J., Nagai, M., Paradisi, P., and Shimizu, Y., Waiting for μ from the MEG experiment, JHEP 0912 (2009) 030, [arXiv:0904.2080].Google Scholar
[1123] Girrbach, J., Mertens, S., Nierste, U., and Wiesenfeldt, S., Lepton flavour violation in the MSSM, JHEP 05 (2010) 026, [arXiv:0910.2663].Google Scholar
[1124] Czarnecki, A. and Marciano, W. J., Electromagnetic dipole moments and new physics, Adv. Ser. Direct. High Energy Phys. 20 (2009) 1167.Google Scholar
[1125] Blanke, M., Buras, A. J., Duling, B., Poschenrieder, A., and Tarantino, C., Charged lepton flavour violation and (g − 2) μ in the littlest Higgs model with T-parity: A clear distinction from supersymmetry, JHEP 05 (2007) 013, [hep-ph/0702136].Google Scholar
[1126] Ellis, J. R., Hisano, J., Raidal, M., and Shimizu, Y., A new parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D66 (2002) 115013, [hep-ph/0206110].Google Scholar
[1127] Arganda, E. and Herrero, M. J., Testing supersymmetry with lepton flavor violating tau and mu decays, Phys. Rev. D73 (2006) 055003, [hep-ph/0510405].Google Scholar
[1128] Brignole, A. and Rossi, A., Anatomy and phenomenology of μτ lepton flavour violation in the MSSM, Nucl. Phys. B701 (2004) 3–53, [hep-ph/0404211].Google Scholar
[1129] Paradisi, P., Higgs-mediated τ → μ and τ → e transitions in II Higgs doublet model and supersymmetry, JHEP 02 (2006) 050, [hep-ph/0508054].Google Scholar
[1130] Paradisi, P., Higgs-mediated e → μ transitions in II Higgs doublet model and supersymmetry, JHEP 08 (2006) 047, [hep-ph/0601100].Google Scholar
[1131] Paradisi, P., Constraints on SUSY lepton flavour violation by rare processes, JHEP 10 (2005) 006, [hep-ph/0505046].Google Scholar
[1132] del Aguila, F., Illana, J. I., and Jenkins, M. D., Precise limits from lepton flavour violating processes on the littlest Higgs model with T-parity, JHEP 01 (2009) 080, [arXiv:0811.2891].Google Scholar
[1133] Goto, T., Okada, Y., and Yamamoto, Y., Tau and muon lepton flavor violations in the littlest Higgs model with T-parity, Phys. Rev. D83 (2011) 053011, [arXiv:1012.4385].Google Scholar
[1134] Calibbi, L. and Signorelli, G., Charged lepton flavour violation: An experimental and theoretical introduction, Riv. Nuovo Cim. 41 (2018), no. 2 1, [arXiv:1709.00294].Google Scholar
[1135] Buras, A. J., Duling, B., Feldmann, T., Heidsieck, T., and Promberger, C., Lepton flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 1009 (2010) 104, [arXiv:1006.5356].Google Scholar
[1136] Cirigliano, V., Falkowski, A., González-Alonso, M., and Rodríguez-Sánchez, A., Hadronic tau decays as new physics probes in the LHC era, Phys. Rev. Lett. 122 (2019), no. 22 221801, [arXiv:1809.01161].Google Scholar
[1137] Celis, A., Cirigliano, V., and Passemar, E., Model-discriminating power of lepton flavor violating τ decays, Phys. Rev. D89 (2014), no. 9 095014, [arXiv:1403.5781].Google Scholar
[1138] Dassinger, B. M., Feldmann, T., Mannel, T., and Turczyk, S., Model-independent analysis of lepton flavour violating tau decays, JHEP 10 (2007) 039, [arXiv:0707.0988].Google Scholar
[1139] Baldini, A., Cei, F., Cerri, C., Dussoni, S., Galli, L., et al., MEG Upgrade proposal, arXiv:1301.7225.Google Scholar
[1140] Blondel, A., Bravar, A., Pohl, M., Bachmann, S., Berger, N., et al., Research proposal for an experiment to search for the decay μeee, arXiv:1301.6113.Google Scholar
[1141] Barlow, R., The PRISM/PRIME project, Nucl. Phys. Proc. Suppl. 218 (2011) 4449.Google Scholar
[1142] SINDRUM II Collaboration, Kaulard, J. et al., Improved limit on the branching ratio of μ → e conversion on titanium, Phys. Lett. B422 (1998) 334–338.Google Scholar
[1143] COMET Collaboration, Adamov, G. et al., COMET Phase-I technical design report, arXiv:1812.09018.Google Scholar
[1144] COMET Collaboration, Anglique, J. C. et al., COMET – A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET collaboration, arXiv:1812.07824.Google Scholar
[1145] Mu2e Collaboration, Abrams, R. et al., Mu2e conceptual design report, arXiv:1211.7019.Google Scholar
[1146] Cirigliano, V., Kitano, R., Okada, Y., and Tuzon, P., On the model discriminating power of μe conversion in nuclei, Phys. Rev. D80 (2009) 013002, [arXiv:0904.0957].Google Scholar
[1147] Baldini, A. et al., A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET, MEG, Mu2e and Mu3e collaborations, arXiv:1812.06540.Google Scholar
[1148] Feldmann, T., Lepton flavour violation theory, PoS BEAUTY2011 (2011) 017, [arXiv:1105.2139].Google Scholar
[1149] Ibarra, A., Neutrino physics and lepton flavour violation: A theoretical overview, Nuovo Cim. C033N5 (2010) 67–75.Google Scholar
[1150] BaBar Collaboration, Aubert, B. et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ , Phys. Rev. Lett. 104 (2010) 021802, [arXiv:0908.2381].Google Scholar
[1151] Belle Collaboration, K. Hayasaka, Recent LFV results on tau lepton from Belle, Nucl. Phys. Proc. Suppl. 225-227 (2012) 169172.Google Scholar
[1152] MEG Collaboration, Baldini, A. M. et al., Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C76 (2016), no. 8 434, [arXiv:1605.05081].Google Scholar
[1153] SINDRUM II Collaboration, Bertl, W. H. et al., A search for muon to electron conversion in muonic gold, Eur. Phys. J. C47 (2006) 337–346.Google Scholar
[1154] COMET Collaboration, Kuno, Y., A search for muon-to-electron conversion at J-PARC: The COMET experiment, PTEP 2013 (2013) 022C01.Google Scholar
[1155] Mu2e Collaboration, Bartoszek, L. et al., Mu2e technical design report, arXiv:1501.05241.Google Scholar
[1156] SINDRUM Collaboration, Bellgardt, U. et al., Search for the decay μ +e + e + e , Nucl. Phys. B299 (1988) 1–6.Google Scholar
[1157] Aushev, T., Bartel, W., Bondar, A., Brodzicka, J., Browder, T., et al., Physics at super B factory, arXiv:1002.5012.Google Scholar
[1158] Hisano, J., Moroi, T., Tobe, K., and Yamaguchi, M., Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D53 (1996) 2442–2459, [hep-ph/9510309].Google Scholar
[1159] Einhorn, M. B. and Wudka, J., The bases of effective field theories, Nucl. Phys. B876 (2013) 556574, [arXiv:1307.0478].Google Scholar
[1160] Crivellin, A., Hofer, L., Matias, J., Nierste, U., Pokorski, S., and Rosiek, J., Lepton-flavour violating B decays in generic Z ′ models, Phys. Rev. D92 (2015), no. 5 054013, [arXiv:1504.07928].Google Scholar
[1161] Bernabeu, J., Nardi, E., and Tommasini, D., μ - e conversion in nuclei and Z′ physics, Nucl. Phys. B409 (1993) 69–86, [hep-ph/9306251].Google Scholar
[1162] Pati, J. C. and Salam, A., Unified lepton-hadron symmetry and a gauge theory of the basic interactions, Phys. Rev. D8 (1973) 12401251.Google Scholar
[1163] BNL Collaboration, Ambrose, D. et al., New limit on muon and electron lepton number violation from K 0 L μ ± e decay, Phys. Rev. Lett. 81 (1998) 5734–5737, [hep-ex/9811038].Google Scholar
[1164] Hung, P. Q., Buras, A. J., and Bjorken, J. D., Petite unification of quarks and leptons, Phys. Rev. D25 (1982) 805.Google Scholar
[1165] Buras, A. J. and Hung, P. Q., Petite unification of quarks and leptons: Twenty two years after, Phys. Rev. D68 (2003) 035015, [hep-ph/0305238].Google Scholar
[1166] Crivellin, A., D’Ambrosio, G., Hoferichter, M., and Tunstall, L. C., Violation of lepton flavor and lepton flavor universality in rare kaon decays, Phys. Rev. D93 (2016), no. 7 074038, [arXiv:1601.00970].Google Scholar
[1167] Borsato, M., Gligorov, V. V., Guadagnoli, D., D. Martinez Santos, and O. Sumensari, The strange side of LHCb, arXiv:1808.02006.Google Scholar
[1168] Bordone, M., Buttazzo, D., Isidori, G., and Monnard, J., Probing lepton flavour universality with Kπν v̅ decays, Eur. Phys. J. C77 (2017), no. 9 618, [arXiv:1705.10729].Google Scholar
[1169] Sher, A. et al., An improved upper limit on the decay K +π + μ + e , Phys. Rev. D72 (2005) 012005, [hep-ex/0502020].Google Scholar
[1170] Appel, R. et al., Search for lepton flavor violation in K + decays, Phys. Rev. Lett. 85 (2000) 2877–2880, [hep-ex/0006003].Google Scholar
[1171] KTeV Collaboration, Abouzaid, E. et al., Search for lepton flavor violating decays of the neutral kaon, Phys. Rev. Lett. 100 (2008) 131803, [arXiv:0711.3472].Google Scholar
[1172] LHCb Collaboration, Aaij, R. et al., Search for the lepton-flavour violating decays B 0(s) → e ± μ , JHEP 03 (2018) 078, [arXiv:1710.04111].Google Scholar
[1173] LHCb Collaboration, Aaij, R. et al., Search for the lepton-flavour-violating decays B 0 s τ ± μ and B 0τ ± μ , arXiv:1905.06614.Google Scholar
[1174] Shabalin, E. P., Electric dipole moment of quark in a gauge theory with left-handed currents, Sov. J. Nucl. Phys. 28 (1978) 75. [Yad. Fiz.28,151(1978)].Google Scholar
[1175] Shabalin, E. P., The electric dipole moment of the neutron in a gauge theory, Sov. Phys. Usp. 26 (1983) 297. [Usp. Fiz. Nauk139,561(1983)].Google Scholar
[1176] Bernreuther, W. and Suzuki, M., The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313–340. [Erratum: Rev. Mod. Phys.64,633(1992)].Google Scholar
[1177] Collaboration, ACME, V. Andreev et al., Improved limit on the electric dipole moment of the electron, Nature 562 (2018), no. 7727 355360.Google Scholar
[1178] Muon (g-2) Collaboration, Bennett, G. W. et al., An improved limit on the muon electric dipole moment, Phys. Rev. D80 (2009) 052008, [arXiv:0811.1207].Google Scholar
[1179] Belle Collaboration, Inami, K. et al., Search for the electric dipole moment of the tau lepton, Phys. Lett. B551 (2003) 16–26, [hep-ex/0210066].Google Scholar
[1180] Pendlebury, J. M. et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D92 (2015), no. 9 092003, [arXiv:1509.04411].Google Scholar
[1181] Graner, B., Chen, Y., Lindahl, E. G., and Heckel, B. R., Reduced limit on the permanent electric dipole moment of Hg199, Phys. Rev. Lett. 116 (2016), no. 16 161601, [arXiv:1601.04339]. [Erratum: Phys. Rev. Lett.119,no.11,119901(2017)].Google Scholar
[1182] Regan, B. C., Commins, E. D., Schmidt, C. J., and DeMille, D., New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805.Google Scholar
[1183] Sachdeva, N. et al., A new measurement of the permanent electric dipole moment of129 Xe using3 He comagnetometry and SQUID detection, arXiv:1902.02864.Google Scholar
[1184] Parker, R. H. et al., First measurement of the atomic electric dipole moment of225 Ra, Phys. Rev. Lett. 114 (2015), no. 23 233002, [arXiv:1504.07477].Google Scholar
[1185] Bishof, M. et al., Improved limit on the225 Ra electric dipole moment, Phys. Rev. C94 (2016), no. 2 025501, [arXiv:1606.04931].Google Scholar
[1186] Pospelov, M. and Ritz, A., Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119–169, [hep-ph/0504231].Google Scholar
[1187] Batell, B., Flavor-diagonal CP violation, Eur. Phys. J. C72 (2012) 2127.Google Scholar
[1188] Chupp, T. and Ramsey-Musolf, M., Electric dipole moments: A global analysis, Phys. Rev. C91 (2015), no. 3 035502, [arXiv:1407.1064].Google Scholar
[1189] Yamanaka, N., Sahoo, B. K., Yoshinaga, N., Sato, T., Asahi, K., and Das, B. P., Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation, Eur. Phys. J. A53 (2017) 54, [arXiv:1703.01570].Google Scholar
[1190] Ginges, J. S. M. and Flambaum, V. V., Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Phys. Rept. 397 (2004) 63–154, [physics/0309054].Google Scholar
[1191] Dmitriev, V. F. and Sen’kov, R. A., P violating and T violating Schiff moment of the mercury nucleus, Phys. Atom. Nucl. 66 (2003) 1940–1945, [nucl-th/0304048]. [Yad. Fiz.66,1988(2003)].Google Scholar
[1192] Fuyuto, K. and Ramsey-Musolf, M., Top down electroweak dipole operators, Phys. Lett. B781 (2018) 492498, [arXiv:1706.08548].Google Scholar
[1193] Peccei, R. D. and Quinn, H. R., Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D16 (1977) 17911797.Google Scholar
[1194] Peccei, R. D. and Quinn, H. R., CP Conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 14401443.Google Scholar
[1195] Weinberg, S., A new light boson? Phys. Rev. Lett. 40 (1978) 223226.Google Scholar
[1196] Wilczek, F., Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279282.Google Scholar
[1197] Nelson, A. E., Naturally weak CP violation, Phys. Lett. 136B (1984) 387391.Google Scholar
[1198] Barr, S. M., Solving the strong CP problem without the Peccei-Quinn symmetry, Phys. Rev. Lett. 53 (1984) 329.Google Scholar
[1199] Marsh, D. J. E., Axion cosmology, Phys. Rept. 643 (2016) 179, [arXiv:1510.07633].Google Scholar
[1200] Dekens, W., J. de Vries, J. Bsaisou, W. Bernreuther, C. Hanhart, U.-G. Meiner, A. Nogga, , and Wirzba, A., Unraveling models of CP violation through electric dipole moments of light nuclei, JHEP 07 (2014) 069, [arXiv:1404.6082].Google Scholar
[1201] ACME Collaboration, Baron, J. et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269272, [arXiv:1310.7534].Google Scholar
[1202] Morrissey, D. E. and Ramsey-Musolf, M. J., Electroweak baryogenesis, New J.Phys. 14 (2012) 125003, [arXiv:1206.2942].Google Scholar
[1203] Kozaczuk, J., Profumo, S., Ramsey-Musolf, M. J., and Wainwright, C. L., Supersymmetric electroweak baryogenesis via resonant sfermion sources, Phys. Rev. D86 (2012) 096001, [arXiv:1206.4100].Google Scholar
[1204] Li, Y., Profumo, S., and Ramsey-Musolf, M., Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett. B673 (2009) 95100, [arXiv:0811.1987].Google Scholar
[1205] Liu, T., Ramsey-Musolf, M. J., and Shu, J., Electroweak beautygenesis: From bs CP-violation to the cosmic baryon asymmetry, Phys. Rev. Lett. 108 (2012) 221301, [arXiv:1109.4145].Google Scholar
[1206] Tulin, S. and Winslow, P., Anomalous B meson mixing and baryogenesis, Phys. Rev. D84 (2011) 034013, [arXiv:1105.2848].Google Scholar
[1207] Cline, J. M., Kainulainen, K., and Trott, M., Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 1111 (2011) 089, [arXiv:1107.3559].Google Scholar
[1208] Weinberg, S., Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333.Google Scholar
[1209] Barr, S. M. and Zee, A., Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21–24. [Erratum: Phys. Rev. Lett.65,2920(1990)].Google Scholar
[1210] Gunion, J. F. and Wyler, D., Inducing a large neutron electric dipole moment via a quark chromoelectric dipole moment, Phys. Lett. B248 (1990) 170176.Google Scholar
[1211] Chang, D., Keung, W.-Y., and Yuan, T. C., Chromoelectric dipole moment of light quarks through two loop mechanism, Phys. Lett. B251 (1990) 608612.Google Scholar
[1212] Altmannshofer, W., Harnik, R., and Zupan, J., Low energy probes of PeV scale sfermions, JHEP 1311 (2013) 202, [arXiv:1308.3653].Google Scholar
[1213] Fukuyama, T., Searching for new physics beyond the standard model in electric dipole moment, Int. J. Mod. Phys. A27 (2012) 1230015, [arXiv:1201.4252].Google Scholar
[1214] Panico, G., Pomarol, A., and Riembau, M., EFT approach to the electron electric dipole moment at the two-loop level, JHEP 04 (2019) 090, [arXiv:1810.09413].Google Scholar
[1215] Crivellin, A. and Saturnino, F., Correlating tauonic B decays to the neutron EDM via a scalar leptoquark, arXiv:1905.08257.Google Scholar
[1216] Brod, J., Haisch, U., and Zupan, J., Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180, [arXiv:1310.1385].Google Scholar
[1217] Brod, J. and Stamou, E., Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order, arXiv:1810.12303.Google Scholar
[1218] Brod, J. and Skodras, D., Electric dipole moment constraints on CP-violating light-quark Yukawas, JHEP 01 (2019) 233, [arXiv:1811.05480].Google Scholar
[1219] Cirigliano, V., Crivellin, A., Dekens, W., de Vries, J., Hoferichter, M., and Mereghetti, E., CP violation in Higgs–gauge interactions: from tabletop experiments to the LHC, arXiv:1903.03625.Google Scholar
[1220] Fuyuto, K., Ramsey-Musolf, M., and Shen, T., Electric dipole moments from CP-violating scalar leptoquark interactions, Phys. Lett. B788 (2019) 5257, [arXiv:1804.01137].Google Scholar
[1221] Gisbert, H. and Ruiz Vidal, J., Improved bounds on heavy quark electric dipole moments, arXiv:1905.02513.Google Scholar
[1222] Cordero-Cid, A., Hernandez, J. M., Tavares-Velasco, G., and Toscano, J. J., Bounding the top and bottom electric dipole moments from neutron experimental data, J. Phys. G35 (2008) 025004, [arXiv:0712.0154].Google Scholar
[1223] Kamenik, J. F., Papucci, M., and Weiler, A., Constraining the dipole moments of the top quark, Phys. Rev. D85 (2012) 071501, [arXiv:1107.3143]. [Erratum: Phys. Rev.D88,no.3,039903(2013)].Google Scholar
[1224] Cirigliano, V., Dekens, W., de Vries, J., and Mereghetti, E., Is there room for CP violation in the top-Higgs sector? Phys. Rev. D94 (2016), no. 1 016002, [arXiv:1603.03049].Google Scholar
[1225] Grozin, A. G., Khriplovich, I. B., and Rudenko, A. S., Upper limits on electric dipole moments of taulepton, heavy quarks, and W-boson, Nucl. Phys. B821 (2009) 285290, [arXiv:0902.3059].Google Scholar
[1226] Kinoshita, T. and Nio, M., Improved α4 term of the muon anomalous magnetic moment, Phys. Rev. D70 (2004) 113001, [hep-ph/0402206].Google Scholar
[1227] Passera, M., Precise mass-dependent QED contributions to leptonic g-2 at order α 2 and α 3 , Phys. Rev. D75 (2007) 013002, [hep-ph/0606174].Google Scholar
[1228] Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M., Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant, Phys. Rev. Lett. 109 (2012) 111807, [arXiv:1205.5368].Google Scholar
[1229] Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M., Complete tenth-order QED contribution to the muon g-2, Phys. Rev. Lett. 109 (2012) 111808, [arXiv:1205.5370].Google Scholar
[1230] Czarnecki, A., Marciano, W. J., and Vainshtein, A., Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D67 (2003) 073006, [hep-ph/0212229].Google Scholar
[1231] Prades, J., E. de Rafael, , and Vainshtein, A., The hadronic light-by-light scattering contribution to the muon and electron anomalous magnetic moments, Adv. Ser. Direct. High Energy Phys. 20 (2009) 303317, [arXiv:0901.0306].Google Scholar
[1232] Prades, J., Standard model prediction of the muon anomalous magnetic moment, Acta Phys. Polon.Supp. 3 (2010) 7586, [arXiv:0909.2546].Google Scholar
[1233] Benayoun, M., David, P., DelBuono, L., and Jegerlehner, F., An update of the HLS estimate of the muon g-2, Eur. Phys. J. C73 (2013) 2453, [arXiv:1210.7184].Google Scholar
[1234] Jegerlehner, F., Muon g − 2 theory: The hadronic part, EPJ Web Conf. 166 (2018) 00022, [arXiv:1705.00263].Google Scholar
[1235] Jegerlehner, F., The muon g-2 in progress, Acta Phys. Polon. B49 (2018) 1157, [arXiv:1804.07409].Google Scholar
[1236] Jegerlehner, F., The role of mesons in muon g − 2, EPJ Web Conf. 199 (2019) 01010, [arXiv:1809.07413].Google Scholar
[1237] Stockinger, D., (g − 2) μ and supersymmetry: Status and prospects, in SUSY 2007 Proceedings, 15th International Conference on Supersymmetry and Unification of Fundamental Interactions, July 26– August 1, 2007, Karlsruhe, Germany, pp. 720–723, 2007. arXiv:0710.2429.Google Scholar
[1238] Marchetti, S., Mertens, S., Nierste, U., and Stockinger, D., tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D79 (2009) 013010, [arXiv:0808.1530].Google Scholar
[1239] Feroz, F., Allanach, B. C., Hobson, M., AbdusSalam, S. S., Trotta, R., et al., Bayesian selection of sign(μ) within mSUGRA in global fits including WMAP5 results, JHEP 0810 (2008) 064, [arXiv:0807.4512].Google Scholar
[1240] Nojiri, M. M. et al., Physics beyond the standard model: Supersymmetry, in Physics at TeV Colliders, La physique du TeV aux collisionneurs, Les Houches 2007: June 11–29, 2007, pp. 291–361, 2008. arXiv:0802.3672.Google Scholar
[1241] Degrassi, G. and Giudice, G., QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. D58 (1998) 053007, [hep-ph/9803384].Google Scholar
[1242] Heinemeyer, S., Stockinger, D., and Weiglein, G., Two loop SUSY corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B690 (2004) 62–80, [hep-ph/0312264].Google Scholar
[1243] Heinemeyer, S., Stockinger, D., and Weiglein, G., Electroweak and supersymmetric two-loop corrections to (g − 2)μ , Nucl. Phys. B699 (2004) 103–123, [hep-ph/0405255].Google Scholar
[1244] Crivellin, A., Girrbach, J., and Nierste, U., Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era, Phys. Rev. D83 (2011) 055009, [arXiv:1010.4485].Google Scholar
[1245] Jegerlehner, F., Implications of low and high energy measurements on SUSY models, Frascati Phys. Ser. 54 (2012) 4251, [arXiv:1203.0806].Google Scholar
[1246] Hanneke, D., Fogwell, S., and Gabrielse, G., New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801, [arXiv:0801.1134].Google Scholar
[1247] Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M., Revised value of the eighth-order QED contribution to the anomalous magnetic moment of the electron, Phys. Rev. D77 (2008) 053012, [arXiv:0712.2607].Google Scholar
[1248] Clade, P., E. de Mirandes, M. Cadoret, S. Guellati-Khelifa, C. Schwob, , et al., Determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett. 96 (2006) 033001.Google Scholar
[1249] Parker, R. H., Yu, C., Zhong, W., Estey, B., and Mller, H., Measurement of the fine-structure constant as a test of the standard model, Science 360 (2018) 191, [arXiv:1812.04130].Google Scholar
[1250] Aoyama, T., Kinoshita, T., and Nio, M., Revised and improved value of the QED tenth-order electron anomalous magnetic moment, Phys. Rev. D97 (2018), no. 3 036001, [arXiv:1712.06060].Google Scholar
[1251] Hanneke, D., Hoogerheide, S. F., and Gabrielse, G., Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment, Phys. Rev. A83 (2011) 052122, [arXiv:1009.4831].Google Scholar
[1252] Davoudiasl, H. and Marciano, W. J., Tale of two anomalies, Phys. Rev. D98 (2018), no. 7 075011, [arXiv:1806.10252].Google Scholar
[1253] Crivellin, A., Hoferichter, M., and Schmidt-Wellenburg, P., Combined explanations of (g − 2) μ,e and implications for a large muon EDM, Phys. Rev. D98 (2018), no. 11 113002, [arXiv:1807.11484].Google Scholar
[1254] Bhattiprolu, P. N. and Martin, S. P., Prospects for vectorlike leptons at future proton-proton colliders, arXiv:1905.00498.Google Scholar
[1255] Engel, J. and Menådez, J., Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review, Rept. Prog. Phys. 80 (2017), no. 4 046301, [arXiv:1610.06548].Google Scholar
[1256] Cardani, L., Neutrinoless double beta decay overview, SciPost Phys. Proc. 1 (2019) 024, [arXiv:1810.12828].Google Scholar
[1257] Cirigliano, V., Dekens, W., De Vries, J., Graesser, M. L., Mereghetti, E., Pastore, S., and Van Kolck, U., New leading contribution to neutrinoless double-beta Decay, Phys. Rev. Lett. 120 (2018), no. 20 202001, [arXiv:1802.10097].Google Scholar
[1258] Dolinski, M. J., Poon, A. W. P., and Rodejohann, W., Neutrinoless Double-beta decay: Status and prospects, Submitted to: Ann. Rev. Nucl. Part. Phys. (2019) [arXiv:1902.04097].Google Scholar
[1259] Gonzalez-Garcia, M. C., Neutrino masses and mixing: A little history for a lot of fun, 2019. arXiv:1902.04583.Google Scholar
[1260] Descotes-Genon, S., Matias, J., and Virto, J., Understanding the BK μ + μ anomaly, Phys. Rev. D 88, 074002 (2013) [arXiv:1307.5683].Google Scholar
[1261] Ghosh, D., Nardecchia, M., and Renner, S. A., Hint of lepton flavour non-universality in B meson decays, JHEP 12 (2014) 131, [arXiv:1408.4097].Google Scholar
[1262] Hurth, T., Mahmoudi, F., and Neshatpour, S., Global fits to bsℓℓ data and signs for lepton non-universality, JHEP 12 (2014) 053, [arXiv:1410.4545].Google Scholar
[1263] Lyon, J. and Zwicky, R., Resonances gone topsy turvy – the charm of QCD or new physics in bsℓ + ? arXiv:1406.0566.Google Scholar
[1264] Jäger, S. and Martin, J. Camalich, Reassessing the discovery potential of the BK ℓ+ decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D93 (2016), no. 1 014028, [arXiv:1412.3183].Google Scholar
[1265] Bardhan, D., Byakti, P., and Ghosh, D., Role of tensor operators in R K and R K , Phys. Lett. B773 (2017) 505512, [arXiv:1705.09305].Google Scholar
[1266] Ghosh, D., Explaining the R K and R K anomalies, Eur. Phys. J. C77 (2017), no. 10 694, [arXiv:1704.06240].Google Scholar
[1267] Crivellin, A. et al., PSI/UZH Workshop: Impact of Bμ + μ on new physics searches, arXiv:1803.10097.Google Scholar
[1268] Crivellin, A., Heeck, J., and Stoffer, P., A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the standard model, Phys. Rev. Lett. 116 (2016), no. 8 081801, [arXiv:1507.07567].Google Scholar
[1269] Iguro, S. and Tobe, K., R(D (∗)) in a general two Higgs doublet model, Nucl. Phys. B925 (2017) 560606, [arXiv:1708.06176].Google Scholar
[1270] Crivellin, A., Mller, D., and Wiegand, C., bsℓ + transitions in two-Higgs-doublet models, arXiv:1903.10440.Google Scholar
[1271] Delle Rose, L., Khalil, S., King, S. J. D., and Moretti, S., R K and R K in an aligned 2HDM with right-handed neutrinos, arXiv:1903.11146.Google Scholar
[1272] Megias, E., Quiros, M., and Salas, L., Lepton-flavor universality violation in RK and RD(∗) from warped space, JHEP 07 (2017) 102, [arXiv:1703.06019].Google Scholar
[1273] Megias, E., Panico, G., Pujolas, O., and Quiros, M., A natural origin for the LHCb anomalies, JHEP 09 (2016) 118, [arXiv:1608.02362].Google Scholar
[1274] Biswas, A., Shaw, A., and Patra, S. K., R(D (∗)) anomalies in light of a nonminimal universal extra dimension, Phys. Rev. D97 (2018), no. 3 035019, [arXiv:1708.08938].Google Scholar
[1275] Kamenik, J. F., Soreq, Y., and Zupan, J., Lepton flavor universality violation without new sources of quark flavor violation, Phys. Rev. D97 (2018), no. 3 035002, [arXiv:1704.06005].Google Scholar
[1276] Guo, S.-Y., Han, Z.-L., Li, B., Liao, Y., and Ma, X.-D., Interpreting the R K(∗) anomaly in the colored ZeeBabu model, Nucl. Phys. B928 (2018) 435447, [arXiv:1707.00522].Google Scholar
[1277] Cid Vidal, X. et al., Beyond the standard model physics at the HL-LHC and HE-LHC, arXiv:1812.07831.Google Scholar
[1278] Di Luzio, L. and Nardecchia, M., What is the scale of new physics behind the B-flavour anomalies? Eur. Phys. J. C77 (2017), no. 8 536, [arXiv:1706.01868].Google Scholar
[1279] Alok, A. K., Bhattacharya, B., Kumar, D., Kumar, J., London, D., and Sankar, S. U., New physics in b → sμ+ μ− : Distinguishing models through CP-violating effects, Phys. Rev. D96 (2017), no. 1 015034, [arXiv:1703.09247].Google Scholar
[1280] Capdevila, B., Crivellin, A., Descotes-Genon, S., Hofer, L., and Matias, J., Searching for new physics with b → sτ+ τ− processes, Phys. Rev. Lett. 120 (2018), no. 18 181802, [arXiv:1712.01919].Google Scholar
[1281] Celis, A., Jung, M., Li, X.-Q., and Pich, A., Sensitivity to charged scalars in BD (∗) τντ and Bτντ decays, JHEP 01 (2013) 054, [arXiv:1210.8443].Google Scholar
[1282] Chen, C.-H. and Nomura, T., Charged-Higgs on R D(∗), τ polarization, and FBA, Eur. Phys. J. C77 (2017), no. 9 631, [arXiv:1703.03646].Google Scholar
[1283] Chen, C.-H. and Nomura, T., Charged Higgs boson contribution to B−q → ℓ v̅ and → (P, V)ℓ v̅ in a generic two-Higgs doublet model, Phys. Rev. D98 (2018), no. 9 095007, [arXiv:1803.00171].Google Scholar
[1284] Li, S.-P., Li, X.-Q., Yang, Y.-D., and Zhang, X., R D(∗), R K(∗) and neutrino mass in the 2HDM-III with right-handed neutrinos, JHEP 09 (2018) 149, [arXiv:1807.08530].Google Scholar
[1285] Alok, A. K., Kumar, D., Kumar, J., Kumbhakar, S., and Sankar, S. U., New physics solutions for R D and R D∗ , JHEP 09 (2018) 152, [arXiv:1710.04127].Google Scholar
[1286] Bhattacharya, B., Datta, A., Kamali, S., and London, D., CP violation in 0 → D + μ− v̅ μ , JHEP 05 (2019) 191, [arXiv:1903.02567].Google Scholar
[1287] He, X.-G. and Valencia, G., B decays with τ leptons in nonuniversal left-right models, Phys. Rev. D87 (2013), no. 1 014014, [arXiv:1211.0348].Google Scholar
[1288] He, X.-G. and Valencia, G., Lepton universality violation and right-handed currents in b → cτν , Phys. Lett. B779 (2018) 5257, [arXiv:1711.09525].Google Scholar
[1289] Asadi, P., Buckley, M. R., and Shih, D., It’s all right(-handed neutrinos): A new W model for the R (∗) anomaly, JHEP 09 (2018) 010, [arXiv:1804.04135]. D Google Scholar
[1290] L. C. Tunstall, A. Crivellin, G. D’Ambrosio, , and Hoferichter, M., Probing lepton flavour (universality) violation at NA62 and future kaon experiments, J. Phys. Conf. Ser. 800 (2017), no. 1 012014, [arXiv:1611.00495].Google Scholar
[1291] Nielsen, H. B. and Froggatt, C. D., Anomalies from non-perturbative standard model effects, in 18th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2018) Corfu, Corfu, Greece, August 31–September 28, 2018, 2019. arXiv:1905.00070.Google Scholar
[1292] Beacham, J. et al., Physics beyond colliders at CERN: Beyond the Standard Model Working Group Report, arXiv:1901.09966.Google Scholar
[1293] LHCb Collaboration, Aaij, R. et al., Physics case for an LHCb Upgrade II – Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865.Google Scholar
[1294] Buras, A., Flavour expedition to the Zeptouniverse, PoS FWNP (2015) 003, [arXiv:1505.00618].Google Scholar
[1295] Brod, J., Lenz, A., Tetlalmatzi-Xolocotzi, G., and Wiebusch, M., New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ , Phys. Rev. D92 (2015) 033002, [arXiv:1412.1446].Google Scholar
[1296] Buras, A. J. and Girrbach, J., Completing NLO QCD Corrections for tree level non-leptonic ΔF = 1 decays beyond the standard model, JHEP 02 (2012) 143, [arXiv:1201.2563].Google Scholar
[1297] Gabbiani, F., Gabrielli, E., Masiero, A., and Silvestrini, L., A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B477 (1996) 321352, [hep-ph/9604387].Google Scholar
[1298] UTfit Collaboration, Bona, M. et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 0803 (2008) 049, [arXiv:0707.0636]. Updates available on http://www.utfit.org.Google Scholar
[1299] Charles, J., Descotes-Genon, S., Ligeti, Z., Monteil, S., Papucci, M., et al., Future sensitivity to new physics in B d , B s and K mixings, Phys. Rev. D89 (2014) 033016, [arXiv:1309.2293].Google Scholar
[1300] McKeen, D., Pospelov, M., and Ritz, A., Electric dipole moment signatures of PeV-scale superpartners, Phys. Rev. D87 (2013), no. 11 113002, [arXiv:1303.1172].Google Scholar
[1301] Moroi, T. and Nagai, M., Probing supersymmetric model with heavy sfermions using leptonic flavor and CP violations, Phys. Lett. B723 (2013) 107112, [arXiv:1303.0668].Google Scholar
[1302] Moroi, T., Nagai, M., and Yanagida, T. T., Lepton flavor violations in high-scale SUSY with right-handed neutrinos, Phys. Lett. B728 (2014) 342346, [arXiv:1305.7357].Google Scholar
[1303] Eliaz, L., Giveon, A., Gudnason, S. B., and Tsuk, E., Mild-split SUSY with flavor, JHEP 1310 (2013) 136, [arXiv:1306.2956].Google Scholar
[1304] Kronfeld, A. S., Tschirhart, R. S., U. Al-Binni, Altmannshofer, W., Ankenbrandt, C., et al., Project X: Physics opportunities, arXiv:1306.5009.Google Scholar
[1305] de Gouvea, A. and Vogel, P., Lepton flavor and number conservation, and physics beyond the standard model, Prog. Part. Nucl. Phys. 71 (2013) 7592, [arXiv:1303.4097].Google Scholar
[1306] Hashimoto, S., Hints and challenges in heavy flavor physics, PoS LATTICE2018 (2018) 008, [arXiv:1902.09119].Google Scholar
[1307] Fierz, M., Force-free particles with any spin, Helv. Phys. Acta 12 (1939) 337.Google Scholar
[1308] Nieves, J. F. and Pal, P. B., Generalized Fierz identities, Am. J. Phys. 72 (2004) 11001108, [hep-ph/0306087].Google Scholar
[1309] Liao, Y. and Liu, J.-Y., Generalized Fierz identities and applications to spin-3/2 particles, Eur. Phys. J. Plus 127 (2012) 121, [arXiv:1206.5141].Google Scholar
[1310] Nishi, C. C., Simple derivation of general Fierz-like identities, Am. J. Phys. 73 (2005) 1160–1163, [hep-ph/0412245].Google Scholar
[1311] Romao, J. C. and Silva, J. P., A resource for signs and Feynman diagrams of the standard model, Int. J. Mod. Phys. A27 (2012) 1230025, [arXiv:1209.6213].Google Scholar
[1312] Hisano, J., Tsumura, K., and Yang, M. J. S., QCD corrections to neutron electric dipole moment from dimension-six four-quark operators, Phys. Lett. B713 (2012) 473480, [arXiv:1205.2212].Google Scholar
[1313] Buras, A. J. and Jung, M., Analytic inclusion of the scale dependence of the anomalous dimension matrix in standard model effective theory, JHEP 06 (2018) 067, [arXiv:1804.05852].Google Scholar
[1314] Cirigliano, V., Dekens, W., De Vries, J., Graesser, M. L., Mereghetti, E., Pastore, S., Piarulli, M., Van Kolck, U., and Wiringa, R. B., A renormalized approach to neutrinoless double-beta decay, arXiv:1907.11254.Google Scholar
[1315] Bauer, M., Neubert, M., Renner, S., Schnubel, M., and Thamm, A., Axion-like particles, lepton-flavor violation and a new explanation of αμ and αe, arXiv:1908.00008.Google Scholar
[1316] Fuentes-Martín, J., Isidori, G., Pagès, J., and Yamamoto, K., With or without U(2)? Probing nonstandard flavor and helicity structures in semileptonic B decays, Phys. Lett. B800 (2020) 135080, [arXiv:1909.02519].Google Scholar
[1317] Brod, J., Gorbahn, M., and Stamou, E., Standard-model prediction of ε K with manifest CKM unitarity, arXiv:1911.06822.Google Scholar
[1318] Bertolini, S., Maiezza, A., and Nesti, F., Kaon CP violation and neutron EDM in the minimal left-right symmetric model, arXiv:1911.09472.Google Scholar
[1319] Fuentes-Martín, J., Isidori, G., König, M., and Selimovi, N., Vector Leptoquarks Beyond Tree Level, arXiv:1910.13474.Google Scholar
[1320] Jäger, S., Kirk, M., Lenz, A., and Leslie, K., Charming New B-Physics, arXiv:1910.12924.Google Scholar
[1321] Altmannshofer, W., Davighi, J., and Nardecchia, M., Gauging the accidental symmetries of the Standard Model, and implications for the flavour anomalies, arXiv:1909.02021.Google Scholar
[1322] Coy, R., Frigerio, M., Mescia, F., and Sumensari, O., New physics in bsℓℓ transitions at one loop, arXiv:1909.08567.Google Scholar
[1323] Rathsman, J. and Tellander, F., Anomaly-free Model Building with Algebraic Geometry, Phys. Rev. D100 (2019), no. 5 055032, [arXiv:1902.08529].Google Scholar
[1324] Smolkovi, A., Tammaro, M., and Zupan, J., Anomaly free Froggatt-Nielsen models of flavor, JHEP 10 (2019) 188, [arXiv:1907.10063].Google Scholar
[1325] Ordell, A., Pasechnik, R., Serdio, H., and Teichmann, F., Classification of anomaly-free 2HDMs with a gauged U(1)’ symmetry, arXiv:1909.05548.Google Scholar
[1326] Crivellin, A., Gross, C., Pokorski, S., and Vernazza, L., Correlating ε ′ /ε to hadronic B decays via U(2)3 flavour symmetry, 2019. arXiv:1909.02101.Google Scholar
[1327] Calibbi, L., Crivellin, A., Kirk, F., Manzari, C. A., and Vernazza, L., Z′ models with less-minimal flavour violation, arXiv:1910.00014.Google Scholar
[1328] Czarnecki, A., Marciano, W. J., and Sirlin, A., Radiative corrections to neutron and nuclear beta decays revisited, Phys. Rev. D100 (2019), no. 7 073008, [arXiv:1907.06737].Google Scholar
[1329] Hardy, J. C. and Towner, I. S., Nuclear beta decays and CKM unitarity, in 13th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2018) Palm Springs, California, USA, May 29– June 3, 2018, 2018. arXiv:1807.01146.Google Scholar
[1330] Wang, B., Results for the mass difference between the long- and short-lived K mesons for physical quark masses, PoS LATTICE2018 (2019) 286, [arXiv:1812.05302].Google Scholar
[1331] Dery, A. and Nir, Y., Implications of the LHCb discovery of CP violation in charm decays, arXiv:1909.11242.Google Scholar
[1332] Brivio, I. et al., Computing Tools for the SMEFT, in Computing Tools for the SMEFT (Aebischer, J., Fael, M., Lenz, A., Spannowsky, M., and Virto, J., eds.), 2019. arXiv:1910.11003.Google Scholar
[1333] Aebischer, J., Bobeth, C., and Buras, A. J., On the Importance of NNLO QCD and Isospin-breaking Corrections in ε ′ /ε, arXiv:1909.05610.Google Scholar
[1334] Sachdeva, N. et al., New Limit on the Permanent Electric Dipole Moment of129 Xe using3 He Comagnetometry and SQUID Detection, arXiv:1909.12800.Google Scholar
[1335] Esteban, I., Gonzalez-Garcia, M. C., Hernandez-Cabezudo, A., Maltoni, M., and Schwetz, T., Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23 , δ CP , and the mass ordering, JHEP 01 (2019) 106, [arXiv:1811.05487].Google Scholar
[1336] Tarasov, O. V., Anomalous dimensions of quark masses in the three-loop approximation, arXiv:1910.12231.Google Scholar
[1337] Christ, N. H., Feng, X., and Sachrajda, C. T., Lattice QCD study of the rare kaon decay K +π + v v̅ at a near-physical pion mass, arXiv:1910.10644.Google Scholar
[1338] Kitahara, T., Okui, T., Perez, G., Soreq, Y., and Tobioka, K., New physics implications of recent search for K L π 0 v v̅ at KOTO, arXiv:1909.11111.Google Scholar
[1339] V. Cirigliano, H. Gisbert, A. Pich, , and A. Rodríguez-Sánchez, Isospin-violating contributions to ε ′ /ε, arXiv:1911.01359.Google Scholar
[1340] Di Luzio, L., Kirk, M., Lenz, A., and Rauh, T., ΔM s theory precision confronts flavour anomalies, arXiv:1909.11087.Google Scholar
[1341] Beneke, M., Bobeth, C., and Szafron, R., Power-enhanced leading-logarithmic QED corrections to B q μ + μ , JHEP 10 (2019) 232, [arXiv:1908.07011].Google Scholar
[1342] CMS Collaboration, Sirunyan, A. M. et al., Measurement of properties of B0 sμ + μ decays and search for B0 dμ + μ with the CMS experiment, arXiv:1910.12127.Google Scholar
[1343] Bečirevič, D., Fedele, M., Nišandžič, I., and Tayduganov, A., Lepton flavor universality tests through angular observables of BD(∗)ℓν decay modes, arXiv:1907.02257.Google Scholar
[1344] Belle Collaboration, Caria, G. et al., Measurement of R(D) and R(D ) with a semileptonic tagging method, arXiv:1910.05864.Google Scholar
[1345] Hou, W.-S., Modak, T., and Wong, G.-G., Scalar leptoquark effects on Bμ v̅ decay, arXiv:1909.00403.Google Scholar
[1346] Mandal, R. and Pich, A., Constraints on scalar leptoquarks from lepton and kaon physics, arXiv:1908.11155.Google Scholar
[1347] Chupp, T., Fierlinger, P., Ramsey-Musolf, M., and J. Singh, , Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91 (2019), no. 1 015001, [arXiv: 1710.02504].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Andrzej J. Buras, Technische Universität München
  • Book: Gauge Theory of Weak Decays
  • Online publication: 11 June 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Andrzej J. Buras, Technische Universität München
  • Book: Gauge Theory of Weak Decays
  • Online publication: 11 June 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Andrzej J. Buras, Technische Universität München
  • Book: Gauge Theory of Weak Decays
  • Online publication: 11 June 2020
Available formats
×