Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T14:47:02.129Z Has data issue: false hasContentIssue false

15 - Fungal species: thoughts on their recognition, maintenance and selection

from V - Environmental population genetics of fungi

Published online by Cambridge University Press:  03 November 2009

John W. Taylor
Affiliation:
Department of Plant and Microbial Biology, University of California, Berkeley
Elizabeth Turner
Affiliation:
Department of Plant and Microbial Biology, University of California, Berkeley
Anne Pringle
Affiliation:
Department of Plant and Microbial Biology, University of California, Berkeley
Jeremy Dettman
Affiliation:
Department of Botany, University of Toronto
Hanna Johannesson
Affiliation:
Department of Evolutionary Biology, Uppsala University
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

When it comes to fungal species and speciation, it is hard to find anything to say that has not already been said in several excellent recent reviews. The most comprehensive source of information is Burnett's recent book (Burnett, 2003), which expands upon the themes from his British Mycological Society Presidential Address (Burnett, 1983). In addition to reviewing mycological species concepts and speciation, he describes enough about basic mycology and the methodology of evolutionary studies to make chapters on defining fungal individuals and populations, or on the processes of evolution in fungi, useful for mycologists interested in evolution and for evolutionary biologists interested in fungi. Burnett's review of the early literature in fungal speciation is particularly helpful in the present age, when it seems as if literature that is not online is forgotten. A second source of information is Brasier (1997), who explored three of what he considered to be the four main elements contributing to fungal speciation: original interbreeding populations, natural selection on populations and reproductive isolation between populations. He left a discussion of mating systems to others. Brasier's discussion of natural selection is particularly good, and his figure comparing the narrow range of growth rates of dikaryotic hyphae taken from Schizophyllum commune fruiting bodies to the much broader range of growth rates for dikaryons synthesized from their haploid progeny is as clear a demonstration of the effects of selection as one could want.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aanen, D. K. & Kuyper, T. W. (1999). Intercompatibility tests in the Hebeloma crustuliniforme complex in northwestern Europe. Mycologia 91, 783–95.CrossRefGoogle Scholar
Ainsworth, G. C., Kirk, P. M., Bisby, G. R., Cannon, P. F., David, J. C. & Stalpers, J. A. (2001). Ainsworth and Bisby's Dictionary of the Fungi. Wallingford: CABI Bioscience.Google Scholar
Avise, J. C. & Wollenberg, K. (1997). Phylogenetics and the origin of species. Proceedings of the National Academy of Sciences of the USA 94, 7748–55.CrossRefGoogle ScholarPubMed
Baker, C. J., Alfenas, A. C. & Harrington, T. C. (2001). Host specialization and cryptic species within Ceratocystis fimbriata. Phytopathology 91, S4–S5.Google Scholar
Baker, C. J., Harrington, T. C., Krauss, U. & Alfenas, A. C. (2003). Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology 93, 1274–84.CrossRefGoogle ScholarPubMed
Brasier, C. M. (1997). Fungal species in practice: identifying species units in fungi. In Species: the Units of Biodiversity, ed. Claridge, M. F., Dawah, H. A. & Wilson, M. R., pp. 135–70. London and New York: Chapman and Hall.Google Scholar
Brasier, C. M., Kirk, S. A., Pipe, N. D. & Buck, K. W. (1998). Rare interspecific hybrids in natural populations of the Dutch elm disease pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi. Mycological Research 102, 45–57.CrossRefGoogle Scholar
Burnett, J. H. (1983). Presidential address: speciation in fungi. Transactions of the British Mycological Society 81, 1–14.CrossRefGoogle Scholar
Burnett, J. H. (2003). Fungal Populations and Species. Oxford: Oxford University Press.Google Scholar
Burt, A., Carter, D. A., Koenig, G. L., White, T. J. & Taylor, J. W. (1996). Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proceedings of the National Academy of Sciences of the USA 93, 770–3.CrossRefGoogle ScholarPubMed
Burt, A., Koufopanou, V. & Taylor, J. W. (2000). Population genetics of human-pathogenic fungi. In Molecular Epidemiology of Infectious Diseases, ed. Thompson, R. C. A., pp. 229–44. London: Arnold.Google Scholar
Carbone, I. & Kohn, L. M. (2001a). A microbial population-species interface: Nested cladistic and coalescent inference with multilocus data. Molecular Ecology 10, 947–64.CrossRefGoogle Scholar
Carbone, I. & Kohn, L. M. (2001b). Multilocus nested haplotype networks extended with DNA fingerprints show common origin and fine-scale, ongoing genetic divergence in a wild microbial metapopulation. Molecular Ecology 10, 2409–22.CrossRefGoogle Scholar
Casselton, L. A. & Olesnicky, N. S. (1998). Molecular genetics of mating recognition in basidiomycete fungi. Microbiology and Molecular Biology Reviews 62, 55–70.Google ScholarPubMed
Clark, A. G., Glanowski, S., Nielsen, R., Thomas, P. D., Kejariwal, A., Todd, M. A., Tanenbaum, D. M., Civello, D., Lu, F., Murphy, B., Ferriera, S., Wang, G., Zheng, X. G., White, T. J., Sninsky, J. J., Adams, M. D. & Cargill, M. (2003). Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302, 1960–3.CrossRefGoogle ScholarPubMed
Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L., Fulton, B., Majors, J., Waterston, R., Cohen, B. A. & Johnston, M. (2003). Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–6.CrossRefGoogle ScholarPubMed
Couch, B. C. & Kohn, L. M. (2002). A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94, 683–93.CrossRefGoogle ScholarPubMed
Coyne, J. A. & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
Debeaupuis, J.-P., Sarfati, J., Chazalet, V. & Latge, J.-P. (1997). Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infection and Immunity 65, 3080–5.Google ScholarPubMed
Dettman, J. R. & Taylor, J. W. (2004). Mutation and evolution of microsatellite loci in Neurospora. Genetics 168, 1231–48.CrossRefGoogle ScholarPubMed
Dettman, J. R., Harbinski, F. M. & Taylor, J. W. (2001). Ascospore morphology is a poor predictor of the phylogenetic relationships of Neurospora and Gelasinospora. Fungal Genetics and Biology 34, 44–61.CrossRefGoogle ScholarPubMed
Dettman, J. R., Jacobson, D. J. & Taylor, J. W. (2003a). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57, 2703–20.CrossRefGoogle Scholar
Dettman, J. R., Jacobson, D. J., Turner, E., Pringle, A. & Taylor, J. W. (2003b). Recognizing species under biological and phylogenetic species concepts: reproductive isolation versus phylogenetic divergence. Evolution 57, 2721–41.CrossRefGoogle Scholar
Dover, G. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299, 111–17.CrossRefGoogle ScholarPubMed
Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., Montigny, J., Marck, C., Neuveglise, C., Talla, E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J. M., Beyne, E., Bleykasten, C., Boisrame, A., Boyer, J., Cattolico, L., Confanioleri, F., Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J. M., Nikoloski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G. F., Straub, M. L., Suleau, A., Swennen, D., Tekaia, F., Wesolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P. & Souciet, J. L. (2004). Genome evolution in yeasts. Nature 430, 35–44.CrossRefGoogle ScholarPubMed
Dyer, P. S., Paoletti, M. & Archer, D. B. (2003). Genomics reveals sexual secrets of Aspergillus. Microbiology 149, 2301–3.CrossRefGoogle ScholarPubMed
Engelbrecht, C. J. B. & Harrington, T. C. (2005). Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 97, 57–69.CrossRefGoogle ScholarPubMed
Falush, D., Stephens, M. & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–87.Google ScholarPubMed
Field, D. & Wills, C. (1996). Long, polymorphic microsatellites in simple organisms. Proceedings of the Royal Society of London B263, 209–15.CrossRefGoogle Scholar
Field, D., Eggert, L., Metzger, D., Rose, R. & Wills, C. (1996). Use of polymorphic short and clustered coding-region microsatellite to distinguish strains of Candida albicans. FEMS Immunology and Medical Microbiology 15, 73–9.CrossRefGoogle Scholar
Fisher, M. C., Koenig, G., White, T. W. & Taylor, J. W. (2000). A test for concordance between the multilocus genealogies of genes and microsatellites in the pathogenic fungus Coccidioides immitis. Molecular Biology and Evolution 17, 1164–74.CrossRefGoogle ScholarPubMed
Fisher, M. C., Koenig, G. L. and White, T. J., San-Blas, G., Negroni, R., Alvarez, I. G., Wanke, B. & Taylor, J. W. (2001). Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proceedings of the National Academy of Sciences of the USA 98, 4558–62.CrossRefGoogle ScholarPubMed
Fisher, M. C., Koenig, G. L., White, T. J. & Taylor, J. T. (2002a). Molecular and phenotypic description of Coccidioides posadasii sp nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia 94, 73–84.CrossRefGoogle Scholar
Fisher, M. C., Rannala, B., Chaturvedi, V. & Taylor, J. W. (2002b). Disease surveillance in recombining pathogens: multilocus genotypes identify sources of Coccidioides infections. Proceedings of the National Academy of Sciences of the USA 99, 9067–71.CrossRefGoogle Scholar
Fisher, M. C., Aanensen, D., Hoog, S. & Vanittanakom, N. (2004). Multilocus microsatellite typing system for Penicillium marneffei reveals spatially structured populations. Journal of Clinical Microbiology 42, 5065–9.CrossRefGoogle ScholarPubMed
Fraser, J. A. & Heitman, J. (2004). Evolution of fungal sex chromosomes. Molecular Microbiology 51, 299–306.CrossRefGoogle ScholarPubMed
Fraser, J. A., Diezmann, S., Subaran, R. L., Allan, A., Lengeler, K. B., Dietrich, F. S. & Heitman, J. (2004). Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLOS Biology 2, 2243–55.CrossRefGoogle ScholarPubMed
Garbelotto, M., Gonthier, P., Linzer, R., Nicolotti, G. & Otrosina, W. (2004). A shift in nuclear state as the result of natural interspecific hybridization between two North American taxa of the basidiomycete complex Heterobasidion. Fungal Genetics and Biology 41, 1046–51.CrossRefGoogle ScholarPubMed
Geiser, D. M., Frisvad, J. C. & Taylor, J. W. (1998a). Evolutionary relationships in Aspergillus section Fumigata inferred from partial beta-tubulin and hydrophobin DNA sequences. Mycologia 90, 831–45.CrossRefGoogle Scholar
Geiser, D. M., Pitt, J. I. & Taylor, J. W. (1998b). Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences of the USA 95, 388–93.CrossRefGoogle Scholar
Geiser, D. M., Dorner, J. W., Horn, B. W. & Taylor, J. W. (2000). The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genetics and Biology 31, 169–79.CrossRefGoogle ScholarPubMed
Giraud, T., Fortini, D., Levis, C.et al. (1999). Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89, 967–73.CrossRefGoogle ScholarPubMed
Glass, N. L. & Kuldau, G. A. (1992). Mating type and vegetative incompatibility in filamentous ascomycetes. Annual Review of Phytopathology 30, 201–24.CrossRefGoogle ScholarPubMed
Harrington, T. C. & Rizzo, D. M. (1999). Defining species in the fungi. In Structure and Dynamics of Fungal Populations, ed. Worrall, J. J., pp. 43–70. Dordrecht and Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
Hibbett, D. S., Fukumasa-Nakai, Y., Tsuneda, A. & Donoghue, M. J. (1995). Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87, 618–38.CrossRefGoogle Scholar
Hung, C. Y., Yu, J. J., Seshan, K. R., Reichard, U. & Cole, G. T. (2002). A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungal pathogen. Infection and Immunity 70, 3443–56.CrossRefGoogle ScholarPubMed
James, T. Y., Porter, D., Hamrick, J. L. & Vilgalys, R. (1999). Evidence for limited intercontinental gene flow in the cosmopolitan mushroom, Schizophyllum commune. Evolution 53, 1665–77.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1977). What are dandelions and aphids?American Naturalist 111, 586–9.CrossRefGoogle Scholar
Johannesson, H. & Stenlid, J. (2003). Molecular markers reveal genetic isolation and phylogeography of the S and F intersterility groups of the wood-decay fungus Heterobasidion annosum. Molecular Phylogenetics and Evolution 29, 94–101.CrossRefGoogle Scholar
Johannesson, H., Vidal, P., Guarro, J., Herr, R. A., Cole, G. T. & Taylor, J. W. (2004). Positive directional selection in the proline-rich antigen (PRA) gene among the human pathogenic fungi Coccidioides immitis, C. posadasii and their closest relatives. Molecular Biology and Evolution 21, 1134–45.CrossRefGoogle ScholarPubMed
Johannesson, H., Townsend, J. P., Hung, C. -Y., Cole, G. T. & Taylor, J. W. (2005). Concerted evolution in the repeats of an immunomodulating cell surface protein, SOWgp, of the human pathogenic fungi Coccidioides immitis and C. posadasii. Genetics 171, 109–17.CrossRefGoogle ScholarPubMed
Kasuga, T., White, T. J. & Taylor, J. W. (2002). Estimation of nucleotide substitution rates in eurotiomycete fungi. Molecular Biology and Evolution 19, 2318–24.CrossRefGoogle ScholarPubMed
Kasuga, T., White, T. J., Koenig, G., McEwen, J., , A., , R., Castaneda, E., Lacaz, C. d. S., Heins-Vaccari, E. M., Freitas, R. S., Zancope-Oliveira, R. M., Qin, Z., Negroni, R., Carter, D. A., Mikami, Y., Tamura, M., Taylor, M. L., Miller, G. F., Poonwan, N. & Taylor, J. W. (2003). Phylogeography of the fungal pathogen Histoplasma capsulatum. Molecular Ecology 12, 3383–401.CrossRefGoogle ScholarPubMed
Kaszubiak, A., Klein, S., Hoog, G. S. & Gräser, Y. (2004). Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii. Medical Mycology 4, 179–86.Google ScholarPubMed
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. (2003). Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–54.CrossRefGoogle ScholarPubMed
Kohn, L. M. (2005). Mechanisms of fungal speciation. Annual Review of phytopathology 43, 279–308. (This thorough review was published too late to be included in this chapter. It is highly recommended to readers.)CrossRefGoogle ScholarPubMed
Kohn, L. M. & Carbone, I. (2001). Origins and epidemiology of Sclerotinia sclerotiorum genotypes on Southeastern US canola: The power of multilocus DNA sequence data, combined datasets and phylogeographic statistical approaches. Phytopathology 91, S115.Google Scholar
Konrad, H., Kirisits, T., Riegler, M., Halmschlager, E. & Stauffer, C. (2002). Genetic evidence for natural hybridization between the Dutch elm disease pathogens Ophiostoma novo-ulmi ssp novo-ulmi and O-novo-ulmi ssp americana. Plant Pathology 51, 78–84.CrossRefGoogle Scholar
Koufopanou, V., Burt, A. & Taylor, J. W. (1997). Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proceedings of the National Academy of Sciences of the USA 94, 5478–82.CrossRefGoogle ScholarPubMed
Koufopanou, V., Burt, A., Szaro, T. & Taylor, J. W. (2001). Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Molecular Biology and Evolution 18, 1246–58.CrossRefGoogle Scholar
Kurtzman, C. P. & Fell, J. W. (1998). The Yeasts: a Taxonomic Study. New York: Elsevier.Google Scholar
Kwon-Chung, K. J. & Bennett, J. E. (1992). Medical Mycology. Philadelphia: Lea & Febiger.Google Scholar
Gac, M. & Giraud, T. (2004). What is sympatric speciation in parasites?Trends in Parasitology 20, 207–8.CrossRefGoogle ScholarPubMed
Lee, J., Lee, T., Lee, Y. W., Yun, S. H. & Turgeon, B. G. (2003). Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Molecular Microbiology 50, 145–52.CrossRefGoogle ScholarPubMed
Leslie, J. F. (1993). Fungal vegetative compatibility. Annual Review of Phytopathology 31, 127–50.CrossRefGoogle ScholarPubMed
LoBuglio, K. F., Pitt, J. I. & Taylor, J. W. (1993). Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in sub genus Biverticulum. Mycologia 85, 592–604.CrossRefGoogle Scholar
Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J. J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, M. & Spratt, B. G. (1998). Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the USA 95, 3140–5.CrossRefGoogle ScholarPubMed
May, G., Shaw, F., Badrane, H. & Vekemans, X. (1999). The signature of balancing selection: Fungal mating compatibility gene evolution. Proceedings of the National Academy of Sciences of the USA 96, 9172–7.CrossRefGoogle ScholarPubMed
McDonald, J. H. & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–4.CrossRefGoogle ScholarPubMed
Moon, C. D., Craven, K. D., Leuchtmann, A., Clement, S. L. & Schardl, C. L. (2004). Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Molecular Ecology 13, 1455–67.CrossRefGoogle ScholarPubMed
Natvig, D. O. & May, G. (1996). Fungal evolution and speciation. Journal of Genetics 75, 441–52.CrossRefGoogle Scholar
Newcombe, G., Stirling, B. & Bradshaw, H. D. (2001). Abundant pathogenic variation in the new hybrid rust Melampsora × columbiana on hybrid poplar. Phytopathology 91, 981–5.CrossRefGoogle Scholar
Nielsen, K. & Yohalem, D. S. (2001). Origin of a polyploid Botrytis pathogen through interspecific hybridization between Botrytis aclada and B. byssoidea. Mycologia 93, 1064–71.CrossRefGoogle Scholar
O'Donnell, K., Cigelnik, E. & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90, 465–93.CrossRefGoogle Scholar
O'Donnell, K., Kistler, H. C., Tacke, B. K. & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the USA 97, 7905–10.CrossRefGoogle ScholarPubMed
O'Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. & Aoki, T. (2004). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology 41, 600–23.CrossRefGoogle ScholarPubMed
Paoletti, M., Rydholm, C., Schwier, E. U., Anderson, M. J., Szakacs, G., Lutzoni, F., Debeaupuis, J. P., Latgé, J. P., Denning, D. W. & Dyer, P. S. (2005). Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Current Biology 15, 1242–8.CrossRefGoogle ScholarPubMed
Perkins, D. D. & Turner, B. C. (1988). Neurospora from natural populations: toward the population biology of a haploid eukaryote. Experimental Mycology 12, 91–131.CrossRefGoogle Scholar
Petersen, R. H. & Hughes, K. W. (1999). Species and speciation in mushrooms. Bioscience 49, 440–52.CrossRefGoogle Scholar
Phillips, D. V., Carbone, I., Gold, S. E. & Kohn, L. M. (2002). Phylogeography and genotype-symptom associations in early and late season infections of canola by Sclerotinia sclerotiorum. Phytopathology 92, 785–93.CrossRefGoogle ScholarPubMed
Pitt, J. I. (1979). The genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. London: Academic Press.Google Scholar
Pöggeler, S. (1999). Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Current Genetics 36, 222–31.Google ScholarPubMed
Pöggeler, S. (2002). Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Current Genetics 42, 153–60.Google ScholarPubMed
Pringle, A. & Taylor, J. W. (2002). Fitness in filamentous fungi. Trends in Microbiology 10, 474–81.CrossRefGoogle ScholarPubMed
Pringle, A., Baker, D. M., Platt, J. L., Wares, J. P., Latgå, J.-P. & Taylor, J. W. (2005). Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59, 1886–99.CrossRefGoogle ScholarPubMed
Pritchard, J. K. & Feldman, M. W. (1996). Statistics for microsatellite variation based on coalescence. Theoretical Population Biology 50, 325–44.CrossRefGoogle ScholarPubMed
Rannala, B. & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the USA 94, 9197–201.CrossRefGoogle ScholarPubMed
Rydholm, C., Paoletti, M., Dyer, P. & Lutzoni, F. (2004). Recombination and mating loci in the “asexual” Aspergillus fumigatus and sexual Neosartorya fischeri species pair. Inoculum 55, 33.Google Scholar
Schardl, C. L. & Craven, K. D. (2003). Interspecific hybridization in plant-associated fungi and oomycetes: a review. Molecular Ecology 12, 2861–73.CrossRefGoogle ScholarPubMed
Sharon, A., Yamaguchi, K., Christiansen, S., Horwitz, B. A., Yoder, O. C. & Turgeon, B. G. (1996). An asexual fungus has the potential for sexual development. Molecular and General Genetics 251, 60–8.CrossRefGoogle ScholarPubMed
Shear, C. L. & Dodge, B. O. (1927). Life histories and heterothallism of the red bread-mold fungi of the Monila sitophila group. Journal of Agricultural Research 34, 1019–42.Google Scholar
Summerbell, R. C. (2002). What is the evolutionary and taxonomic status of asexual lineages in the dermatophytes?Studies in Mycology 47, 97–101.Google Scholar
Swanson, W. J. & Vacquier, V. D. (2002). The rapid evolution of reproductive proteins. Nature Reviews Genetics 3, 137–44.CrossRefGoogle ScholarPubMed
Taylor, J. W. & Fisher, M. C. (2003). Fungal multilocus sequence typing – it's not just for bacteria. Current Opinion in Microbiology 6, 351–6.CrossRefGoogle Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Fisher, M. C. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31, 21–32.CrossRefGoogle ScholarPubMed
Tran-Dinh, N., Pitt, J. I. & Carter, D. A. (1999). Molecular genotype analysis of natural toxigenic and nontoxigenic isolates of Aspergillus flavus and A. parasiticus. Mycological Research 103, 1485–90.CrossRefGoogle Scholar
Turgeon, B. G. (1998). Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology 36, 115–37.CrossRefGoogle ScholarPubMed
Turner, B. C., Perkins, D. D. & Fairfield, A. (2001). Neurospora from natural populations: a global study [Review]. Fungal Genetics and Biology 32, 67–92.CrossRefGoogle Scholar
Vilgalys, R. & Sun, B. L. (1994). Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the USA 91, 4599–603.CrossRefGoogle ScholarPubMed
Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. & O'Donnell, K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences of the USA 99, 9278–83.CrossRefGoogle ScholarPubMed
Wolfe, K. H. & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–13.CrossRefGoogle ScholarPubMed
Wong, S., Butler, G. & Wolfe, K. H. (2002). Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proceedings of the National Academy of Sciences of the USA 99, 9272–7.CrossRefGoogle ScholarPubMed
Worrall, J. J., Ed. (1999). Structure and Dynamics of Fungal Populations. Dordrecht: Kluwer.CrossRefGoogle Scholar
Wu, J., Saupe, S. J. & Glass, N. L. (1998). Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. Proceedings of the National Academy of Sciences of the USA 95, 12,398–403.CrossRefGoogle Scholar
Yang, Z. H. & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. Trends in Ecology and Evolution 15, 496–503.CrossRefGoogle ScholarPubMed
Yang, Z. H. & Nielsen, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Molecular Biology and Evolution 19, 908–17.CrossRefGoogle ScholarPubMed
Yun, S. H., Berbee, M. L., Yoder, O. C. & Turgeon, B. G. (1999). Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proceedings of the National Academy of Sciences of the USA 96, 5592–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×