Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T08:01:47.692Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 June 2020

David Dudgeon
Affiliation:
The University of Hong Kong
Get access
Type
Chapter
Information
Freshwater Biodiversity
Status, Threats and Conservation
, pp. 405 - 470
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, R., Allan, J.D. & Lehner, B. (2007). Unlocking the potential of protected areas for freshwaters. Biological Conservation 134: 4863.CrossRefGoogle Scholar
Abell, R., Thieme, M.L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Contreras Balderas, S. Bussing, W., Stiassny, M.L.J., Skelton, P., Allen, G.R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J.V., Heibel, T.J., Wikramanake, E., Olson, D., Lopez, H.L., Reis, R.E., Lundberg, J.G., Sabaj Perez, M.H. & Petry, P. (2008). Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403414.Google Scholar
Acreman, M., Arthington, A.H., Colloff, M.J., Couch, C., Crossman, N.D., Dyer, F., Overton, I., Pollino, C.A., Stewardson, M.J. & Young, W. (2014). Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Frontiers in Ecology and the Environment 12: 466473.Google Scholar
Adams, V.M., Setterfield, S.A., Douglas, M.M., Kennard, M.J. & Ferdinands, K. (2015). Measuring benefits of protected area management: trends across realms and research gaps for freshwater systems. Philosophical Transactions of the Royal Society B 370: 20140274. https://doi.org/10.1098/rstb.2014.0274.Google Scholar
Adkins, J., Barton, C., Grubbs, S., Stringer, J. & Kolka, R. (2016). Assessment of streamside management zones for conserving benthic macroinvertebrate communities following timber harvest in eastern Kentucky headwater catchments Water 8: 261. https://doi.org/10.3390/w8060261.Google Scholar
Adrian, R., O’Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W.K., Livingstone, D.M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G.A. & Winder, M. (2009). Lakes as sentinels of climate change. Limnology & Oceanography 54: 22832297.Google Scholar
AghaKouchaka, A., Norouzib, H., Madanic, K., Mirchid, A., Azarderakhshe, M., Nazemif, A., Nasrollahia, N., Farahmanda, A., Mehrana, A. & Hasanzadeh, E. (2015). Aral Sea syndrome desiccates Lake Urmia: call for action. Journal of Great Lakes Research 41: 307311.CrossRefGoogle Scholar
Agostinho, C.S., Pelicice, F.M., Marques, E.E., Soares, A.B. & Almeida, D.A. (2011). All that goes up must come down? Absence of downstream passage through a fish ladder in a large Amazonian river. Hydrobiologia 675: 112.Google Scholar
Aharon-Rotman, Y., McEvoy, J., Zheng, Z., Yu, H., Wang, X., Si, Y., Xu, Z., Yuan, Z., Jeong, W., Cao, L. & Fox, A.D. (2017). Water level affects availability of optimal feeding habitats for threatened migratory waterbirds. Ecology and Evolution 7: 1044010450.Google Scholar
Albrecht, C. & Wilke, T. (2008). Lake Ohrid: biodiversity and evolution. Hydrobiologia 615: 103140.Google Scholar
Albright, T.P., Moorhouse, T.G. & McNabb, T.J. (2004). The rise and fall of water hyacinth in Lake Victoria and the Kagera River basin, 1989–2001. Journal of Aquatic Plant Management 42: 7384.Google Scholar
Alcamo, J.M., Vörösmarty, C.J., Naiman, R.J., Lettenmaier, D.P. & Pahl-Wostl, C. (2008). A grand challenge for freshwater research: understanding the global water system. Environmental Research Letters 3: 010202. http://iopscience.iop.org/1748-9326/3/1/010202.Google Scholar
Alcaraz, C. & Garcia-Berthou, E. (2007). Life history variation of invasive mosquito fish (Gambusia holbrooki) along a salinity gradient. Biological Conservation 139: 8392.Google Scholar
Al-Chokhachy, A., Alder, A., Hostetler, S., Gresswell, R. & Shepard, B. (2013). Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change. Global Change Biology 19: 30693081.Google Scholar
Allan, J.D. & Castillo, M.M. (2007). Stream Ecology: Structure and Function of Running Waters, 2nd ed. Springer, Dordrecht.Google Scholar
Allan, J.D., Abell, R., Hogan, Z., Revenga, C., Taylor, B.W., Welcomme, R.L. & Winemiller, K. (2005). Overfishing of inland waters. BioScience 55: 10411051.CrossRefGoogle Scholar
Allen, D.J., Smith, K.G. & Darwall, W.R.T. (2012). The Status and Distribution of Freshwater Biodiversity in Indo-Burma. IUCN, Cambridge and Gland.Google Scholar
Allison, E.H., Perry, A.L., Badjeck, M.C., Adger, W.N., Brown, K., Conway, D., Halls, A.S., Pilling, G.M., Reynolds, J.D., Andrew, N.L. & Dulvy, N.K. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10: 173196.Google Scholar
Alofs, K.M., Jackson, D.A. & Lester, N.P. (2014). Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Diversity and Distributions 20: 123136.Google Scholar
Alroy, J. (2015). Current extinction rates of reptiles and amphibians. Proceedings of the National Academy of Sciences of the United States of America 112: 1300313008.Google Scholar
Anderson, C.B. & Rosemond, A.D. (2007). Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile. Oecologia 154: 141153.Google Scholar
Anderson, J.T., Saldaña Rojas, J. & Flecker, A.S. (2009). High-quality seed dispersal by fruit-eating fishes in Amazonian floodplain habitats. Oecologia 161: 279290.Google Scholar
Andreou, D., Arkush, K.D., Guégan, J.F. & Gozlan, R.E. (2012). Introduced pathogens and native freshwater biodiversity: a case study of Sphaerothecum destruens. PLoS One 7: e36998. https://doi.org/10.1371/journal.pone.0036998.CrossRefGoogle ScholarPubMed
Angulo, A. (2008). Conservation needs of Batrachophrynus and Telmatobius frogs of the Andes of Peru. Conservation & Society 6: 328333.CrossRefGoogle Scholar
Antunes, A.P., Fewster, R.M., Venticinque, E.M., Peres, C.A., Levi, T., Rohe1, F. & Shepard, G.H. (2016). Empty forest or empty rivers? A century of commercial hunting in Amazonia. Science Advances 2: e1600936. http://advances.sciencemag.org/cgi/content/full/2/10/e1600936/DC1.Google Scholar
Arantes, M.L. & Freitas, C.E.C. (2016). Effects of fisheries zoning and environmental characteristics on population parameters of the tambaqui (Colossoma macropomum) in managed floodplain lakes in the Central Amazon. Fisheries Management and Ecology 23: 133143.Google Scholar
Arashkevich, E.G., Sapozhnikov, P.V., Soloviov, K.A., Kudyshkin, T.V. & Zavialov, P.O. (2009). Artemia parthenogenetica (Branchiopoda: Anostraca) from the Large Aral Sea: abundance, distribution, population structure and cyst production. Journal of Marine Systems 76: 359366.Google Scholar
Arthington, A.H. (2012). Environmental Flows: Saving Rivers in the Third Millennium. University of California Press, Oakland.Google Scholar
Arthington, A.H., Bunn, S.E., Poff, N.L. & Naiman, R.J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16: 13111318.Google Scholar
Arthington, A.H., Naiman, R.J., McClain, M.E. & Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology 55: 116.Google Scholar
Arthington, A.H., Bhaduri, A., Bunn, S.E., Jackson, S.E., Tharme, R.E., Tickner, D.,Young, B., Acreman, M., Baker, N., Capon, S., Horne, A.C., Kendy, E., McClain, M.E., Poff, N.L., Richter, B.D. & Ward, S. (2018). The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Frontiers in Environmental Science 6: 45. https://doi.org/10.3389/fenvs.2018.00045.Google Scholar
Asquith, N.M., Vargas, M.T. & Wunder, S. (2008). Selling two environmental services: in-kind payments for bird habitat and watershed protection in Los Negros, Bolivia. Ecological Economics 65: 675684.CrossRefGoogle Scholar
Audzijonyte, A., Kuparinen, A. & Fulton, E. A. (2013). How fast is fisheries-induced evolution? Quantitative analysis of modelling and empirical studies. Evolutionary Applications 6: 585595.Google Scholar
Bai, J., Chen, X., Li, J., Yang, L. & Fang, H. (2011). Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environmental Monitoring and Assessment 178: 247256.Google Scholar
Bain, M.B., Haley, N., Peterson, D.L., Arend, K.K., Mills, K.E. & Sullivan, P.J. (2007). Recovery of a US endangered fish. PLoS ONE 2: e168. https://doi.org/10.1371/journal.pone.0000168Google Scholar
Baird, I.G. (2006a). Probarbus jullieni and Probarbus labeamajor: the management and conservation of two of the largest fish species in the Mekong River in southern Laos. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 517532.Google Scholar
Baird, I.G. (2006b). Strength in diversity: fish sanctuaries and deep-water pools in Lao PDR. Fisheries Management and Ecology 13: 18.Google Scholar
Baird, I.G. (2013). Boesemania microlepis. The IUCN Red List of Threatened Species 2013: e.T181232A7664209. http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T181232A7664209.enGoogle Scholar
Baird, I.G., Phylavanh, B., Vongsenesouk, B. & Xaiyamanivong, K. (2001). The ecology and conservation of the smallscale croaker Boesemania microlepis (Bleeker 1858-59) in the mainstream Mekong River, southern Laos. Natural History Bulletin of the Siam Society 49: 161176.Google Scholar
Baldwin, A.K., Corsi, S.R. & Mason, S.A. (2016). Plastic debris in 29 Great Lakes tributaries: relations to watershed attributes and hydrology. Environmental Science & Technology 50: 1037710385.Google Scholar
Balian, E.V., Lévêque, C., Segers, H. & Martens, K. (2008a). Freshwater Animal Biodiversity Assessment. Springer, Berlin.Google Scholar
Balian, E.V., Segers, H., Lévéque, C. & Martens, K. (2008b). The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627637.Google Scholar
Barlow, C., Baran, E., Halls, A. & Kshatriya, M. (2008). How much of the Mekong fish catch is at risk from upstream dam development? Catch and Culture 14: 1621.Google Scholar
Barnhart, M.C. (2008). Unio Gallery. http://unionid.missouristate.eduGoogle Scholar
Banks, C.B., Lau, M.Y.N. & Dudgeon, D. (2008). Captive management and breeding of Romer’s tree frog Chirixalus romeri. International Zoo Yearbook 42: 99108.Google Scholar
Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B. & Ferrer, E.A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature 471: 5157.Google Scholar
Barrett, J.H., Locker, A.M. & Roberts, C.M. (2004). The origins of intensive marine fishing in medieval Europe: the English evidence. Proceedings of the Royal Society of London B 271: 24172421.Google Scholar
Barthem, R.B., Goulding, M., Leite, R.G., Cañas, C., Forsberg, B., Venticinque, E., Petry, P., Ribeiro, M.L.B., Chuctaya, J. & Mercado, A. (2017). Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juvenilesScientific Reports 7: 41784. https://doi.org/10.1038/srep41784Google Scholar
Bates, A.E., McKelvie, C.M., Sorte, C.J.B., Morley, S.A., Jones, N.A.R., Mondon, J., Bird, T.J. & Quinn, G. (2013). Geographical range, heat tolerance and invasion success in aquatic species. Proceedings of the Royal Society B: Biological Sciences 280: 20131958.Google Scholar
Baumgartner, L., Zampatti, B., Jones, M., Stuart, I. & Mallen-Cooper, M. (2014). Fish passage in the Murray-Darling Basin, Australia: not just an upstream battle. Ecological Management and Restoration 15: 2839.Google Scholar
Baxter, C.V., Fausch, K.D., Murakami, M. & Chapman, P.L. (2004). Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85: 25652663.CrossRefGoogle Scholar
Beard, T.D. Jr., Arlinghaus, R., Cooke, S.J., McIntyre, P.B., De Silva, S., Bartley, D. & Cowx, I.G. (2011). Ecosystem approach to inland fisheries: research needs and implementation strategies. Biology Letters 7: 481483.CrossRefGoogle ScholarPubMed
Beatty, S.J., Morgan, D.L. & Lymbery, A.J. (2014). Implications of climate change for potamodromous fishes. Global Change Biology 20: 17941807.CrossRefGoogle ScholarPubMed
Becker, L.A., Pascual, M.A. & Basso, N.G. (2007). Colonization of the southern Patagonia ocean by exotic chinook salmon. Conservation Biology 21: 13471352.Google Scholar
Beer, W.N. & Anderson, J.J. (2011). Sensitivity of juvenile salmonid growth to future climate trends. River Research and Applications 27: 663669.Google Scholar
Beggel, S., Brandner, J., Cerwenka, A.F. & Geist, J. (2016). Synergistic impacts by an invasive amphipod and an invasive fish explain native gammarid extinction. BMC Ecology 16: 32. https://doi.org/10.1186/s12898–016-0088-6Google Scholar
Behrouzi-Rad, B. (2009). Waterbird populations during dry and wet years in the Hamoun Wetlands Complex, Iran/Afghanistan border. Podoces 4: 8899.Google Scholar
Bellard, C., Cassey, P. & Blackburn, T.M. (2016). Alien species as a driver of recent extinctions. Biology Letters 12: 20150623.Google Scholar
Bellmore, J.R., Duda, J.J., Craig, L.S., Greene, S.L., Torgersen, C.W., Collins, M.J. & Vittum, K. (2017). Status and trends of dam removal research in the United States. WIREs: Water 4: e1164. https://doi.org/10.1002/wat2.1164CrossRefGoogle Scholar
Bennett, G., Carroll, N. & Hamilton, K. (2013). Charting New Waters: State of Watershed Payments 2012. Forest Trends, Washington, DC. www.ecosystemmarketplace.com/reports/sowp2012Google Scholar
Benson, A.J., Raikow, D., Larson, J. & Fusaro, A. (2014a). Dreissena polymorpha. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5Google Scholar
Benson, A.J., Richerson, M.M., Maynard, E., Larson, J. & Fusaro, A. (2014b). Dreissena rostriformis bugensis. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/factsheet.aspx?speciesid=95Google Scholar
Bergamino, N., Horion, S, Stenuitec, S., Cornet, Y., Loiselle, S., Plisnier, P. & Descy, J. (2010). Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment 114: 772780.Google Scholar
Bernes, C., Carpenter, S.R., Gårdmark, A., Larsson, P., Persson, L., Skov, C., Speed, J.D.M. & Van Donk, E. (2015). What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. Environmental Evidence 4: 7. https://doi.org/10.1186/s13750–015-0032-9CrossRefGoogle Scholar
Bernhardt, E.S. & Palmer, M.A. (2011). River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecological Applications 21: 19261931.Google Scholar
Bernhardt, E.S., Bunn, S.E., Hart, D.D., Malmqvist, B., Muotka, T., Naiman, R.J., Pringle, C., Reuss, M. & van Wilgen, B. (2006). Perspective: the challenge of ecologically sustainable water managementWater Policy 8: 475479.Google Scholar
Bianchi, T.S., Davis, G.M. & Strayer, D.S. (1994). An apparent hybrid zone between freshwater gastropod species Elimia livescens and E. virginica (Gastropoda: Pleuroceridae). American Malacological Bulletin 11: 7378.Google Scholar
Bickford, D., Howard, S.D., Ng, D.J.J. & Sheridan, J.A. (2010). Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodiversity and Conservation 19: 10431062.Google Scholar
Biermann, F., Abbott, K., Andresen, S., Bäckstrand, K., Bernstein, S., Betsill, M.M., Bulkeley, H., Cashore, B., Clapp, J., Folke, C., Gupta, A., Gupta, J., Haas, P.M., Jordan, A., Kanie, N., Kluvánková-Oravská, T., Lebel, L., Liverman, D., Meadowcroft, J., Mitchell, R.B., Newell, P., Oberthür, S., Olsson, L., Pattberg, P., Sánchez-Rodríguez, R., Schroeder, H., Underdal, A., Vieira, S.C., Vogel, C., Young, O.R., Brock, A. & Zondervan, R. (2012). Navigating the Anthropocene: improving Earth system governance. Science 335: 13061307.Google Scholar
BirdLife International (2014). IUCN Red List for Birds. www.birdlife.orgGoogle Scholar
BirdLife International (2015a). Important Bird Areas Factsheet: Haur Al Hammar. www.birdlife.orgGoogle Scholar
BirdLife International (2015b). Important Bird Areas factsheet: Central Marshes. www.birdlife.orgGoogle Scholar
BirdLife International (2015c). Important Bird Areas Factsheet: Hawizeh. www.birdlife.orgGoogle Scholar
BirdLife International (2016). Leucogeranus leucogeranus. The IUCN Red List of Threatened Species 2016: e.T22692053A98336905. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692053A98336905.enCrossRefGoogle Scholar
BirdLife International (2018). Important Bird Areas Factsheet: Lake Turkana. www.birdlife.orgGoogle Scholar
Birstein, V.J. (1997). Threatened fishes of the world: Pseudoscaphirhynchus spp. (Acipenseridae). Environmental Biology of Fishes 48: 381383.Google Scholar
Blaber, S.J., Milton, D.A., Brewer, D.T. & Salini, J.P. (2003). Biology, fisheries, and status of tropical shads Tenualosa spp. in South and Southeast Asia. American Fisheries Society Symposium 35: 4958.Google Scholar
Blinn, D.M. & Poff, N.L. (2005). Colorado River Basin. In Rivers of North America (Benke, A.C. & Cushing, C.E., eds), Elsevier Academic Press, Amsterdam: pp. 483538.Google Scholar
Boethius, A. (2016). Something rotten in Scandinavia: the world’s earliest evidence of fermentation. Journal of Archaeological Science 66: 169180.Google Scholar
Bogardi, J.J., Dudgeon, D., Lawford, R., Flinkerbusch, E., Meyn, A., Pahl-Wostl, C., Vielhauer, K. & Vörösmarty, C. (2012). Water Security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Current Opinion in Environmental Sustainability 4: 3543.Google Scholar
Böhm, M., Collen, B., Baillie, J.E.M., Bowles, P., Chanson, J., Cox, N., Hammerson, G., Hoffmann, M., Livingstone, S.R., Ram, M. et al. (2013). The conservation status of the world’s reptiles. Biological Conservation 157: 372385.Google Scholar
Boltovskoy, D. & Correa, N. (2015). Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America. Hydrobiologia 746: 8195.Google Scholar
Boltovskoy, D., Karatayev, A., Burlakova, L., Cataldo, D., Karatayev, V., Sylvester, F. & Marinelarena, A. (2009). Significant ecosystem-wide effects of the swiftly spreading invasive freshwater bivalve Limnoperna fortunei. Hydrobiologia 636: 271284.Google Scholar
Bond, N., Costelloe, J., King, A., Warfe, D., Reich, P. & Balcombe, S (2014a). Ecological risks and opportunities from engineered artificial flooding as a means of achieving environmental flow objectives. Frontiers in Ecology and the Environment 12: 386394.Google Scholar
Bond, N.R, Thomson, J.R. & Reich, P. (2014b). Incorporating climate change in conservation planning for freshwater fishes. Diversity and Distributions 20: 931942.Google Scholar
Braulik, G.T., Arshad, M., Noureen, U. & Northridge, S.P. (2014). Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus River dolphin (Platanista gangetica minor). PLoS ONE 9: e101657. https://doi.org/10.1371/journal.pone.0101657Google Scholar
Britton, A.W., Day, J.J., Doble, C.J. Ngatunga, B.P., Kemp, K.M. Carbone, C. & Murrell, D.J. (2017). Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika. Biological Conservation 212: 120129.Google Scholar
Britton, J.R., Boar, R.R., Gray, J., Foster, J., Lugonso, J. & Harper, D.M. (2007). From introduction to fishery dominance: the initial impacts of the invasive carp Cyprinus carpio in Lake Naivasha, Kenya, 1999 to 2006. Journal of Fish Biology 71 (Suppl. D): 239257.Google Scholar
Broadhurst, B.T., Ebner, B.C., Lintermans, M., Thiem, J.D. & Clear, R.C. (2013). Jailbreak: a fishway releases the endangered Macquarie perch from confinement below an anthropogenic barrier. Marine and Freshwater Research 64: 900908.Google Scholar
Brooks, E.G.E, Holland, R.A., Darwall, W.R.T. & Eigenbrod, F. (2016). Global evidence of positive impacts of freshwater biodiversity on fishery yields. Global Ecology and Biogeography 25: 553562.CrossRefGoogle ScholarPubMed
Brooks, S.E., Reynolds, J.D. & Allison, E.H. (2008). Sustained by snakes? Seasonal livelihood strategies and resource conservation by Tonlé Sap fishers in Cambodia. Human Ecology 36: 835851.Google Scholar
Brooks, S.E., Allison, E.H., Gill, J.A. & Reynolds, J.D. (2010). Snake prices and crocodile appetites: aquatic wildlife supply and demand on Tonle Sap Lake, Cambodia. Biological Conservation 143: 21272135.CrossRefGoogle Scholar
Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L. (2006). Global biodiversity conservation priorities. Science 313: 5861.CrossRefGoogle ScholarPubMed
Brosse, S., Beauchard, O., Blanchet, S., Dürr, H.H., Grenouillet, G., Hugueny, B., Lauzeral, C., Leprieur, F., Tedesco, P.A., Villéger, S. & Oberdorff, T. (2013). SPRICH: a database of freshwater fish species richness across the World. Hydrobiologia 700: 343349.Google Scholar
Brown, A.R., Owen, S.F., Peters, J., Zhang, Y., Soffker, M., Paull, G.C., Hosken, D.J., Abdul Wahab, M. & Tyler, C.R. (2015). Climate change and pollution speed declines in zebrafish populations. Proceedings of the National Academy of Sciences of the United States of America 112: E1237E1246.Google Scholar
Brown, J.J., Limburg, K.E., Waldman, J.R., Stephenson, K., Glenn, E.P. & Juanes, F. (2013). Fish and hydropower on the U.S. Atlantic coast: failed fisheries policies from half-way technologies. Conservation Letters 6: 280286.Google Scholar
Brown, K.J., Rüber, L., Bills, R. & Day, J.J. (2010). Mastacembelid eels support Lake Tanganyika as an evolutionary hotspot of diversification. BMC Evolutionary Biology 10:188. https://doi.org/10.1186/1471-2148-10-188Google Scholar
Brown, T.C., Hobbins, M.T. & Ramirez, J.A. (2008). Spatial distribution of water supply in the conterminous United States. Journal of the American Water Resources Association 44: 14741487.Google Scholar
Buisson, L., Grenouillet, G., Villéger, S., Canal, J. & Laffaille, P. (2013). Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biology 19: 387400.Google Scholar
Bunn, S.E. & Arthington, A.H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492507.Google Scholar
Bunn, S.E., Abal, E.G., Smith, M.J., Choy, S.C., Fellows, C.S., Harch, B.D., Kennard, M.J. & Sheldon, F. (2010). Integration of science and monitoring of river ecosystem health to guide investments in catchment protection and rehabilitation. Freshwater Biology 55 (Suppl. 1): 223240.Google Scholar
Bunnell, D.B., Barbiero, R.P., Ludsin, S.A., Madenjian, C.P., Warren, G.J., Dolan, D.M., Brenden, T.O., Briland, R.,Gorman, O.T., He, J.X., Johengen, T.H., Lantry, B.F., Nalepa, T.F., Riley, S.C., Riseng, C.M., Treska, T.J., Tsehaye, I., Walsh, M.G., Warner, D.M. & Weidel, B.C. (2014). Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulationBioScience 64: 2639.Google Scholar
Bunt, C.M., Castro-Santos, T. & Haro, A. (2012). Performance of fish passage structures at upstream barriers to migration. River Research and Applications 28: 457478.Google Scholar
Burney, D.A. & Flannery, T.F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology & Evolution 20: 395401.Google Scholar
Burns, C.W., Schallenberg, M. & Verburg, P. (2014). Potential use of classical biomanipulation to improve water quality in New Zealand lakes: a re-evaluation. New Zealand Journal of Marine and Freshwater Research 48: 127138.Google Scholar
Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, R.A.E., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J.F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Hernández Morcillo, M., Oldfield, T.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.C., & Watson, R. (2010). Global biodiversity: indicators of recent declines. Science 328: 11641168.Google Scholar
Bush, A., Theischinger, G., Nipperess, D., Turak, E. & Hughes, L. (2013). Dragonflies: climate canaries for river management. Diversity and Distributions 19: 8697.Google Scholar
Cael, B.B., Heathcote, A.J. & Seekell, D.A. (2017). The volume and mean depth of Earth’s lakes. Geophysical Research Letters 44: 209218.Google Scholar
Cairns, A. & Yan, N.D. (2009). A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environmental Reviews 17: 6779.CrossRefGoogle Scholar
Calles, O. & Greenberg, L. (2009). Connectivity is a two-way street – the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25: 12681286.Google Scholar
Campbell, I., Poole, C., Giesen, W. & Valbo-Jorgensen, J. (2006). Species diversity and ecology of Tonle Sap Great Lake, Cambodia. Aquatic Sciences 68: 355373.Google Scholar
Capon, S.J. & Capon, T.R. (2017). An impossible prescription: why science cannot determine environmental water requirements for a healthy Murray-Darling Basin. Water Economics and Policy 3: https://doi.org/10.1142/S2382624X16500375Google Scholar
Capps, K.A. & Flecker, A.S. (2013a). Invasive aquarium fish transform ecosystem nutrient dynamics. Proceedings of the Royal Society of Biology: Series B 280: 20132418.Google Scholar
Capps, K.A. & Flecker, A.S. (2013b). Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS ONE 8: e54093. https://doi.org/10.1371/journal.pone.0054093Google Scholar
Capuli, E. & Froese, R. (1999). Status of the freshwater fishes of the Philippines. In Proceedings of the 5th Indo-Pacific Fish Conference (Seret, B. & Sire, J. Y., eds), Societe Francaise d’Ichthyology, Paris: pp. 381384.Google Scholar
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature 486: 5967.Google Scholar
Carey, M.P. & Zimmerman, C.E. (2014). Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska. Ecology and Evolution 4: 19811993.Google Scholar
Carlisle, D.M., Wolock, D.M. & Meador, M.R. (2011). Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Frontiers in Ecology and the Environment 9: 264–70.Google Scholar
Carlson, P.E., Donadi, S. & Sandin, L. (2018). Responses of macroinvertebrate communities to small dam removals: implications for bioassessment and restoration. Journal of Applied Ecology 55: 18961907.Google Scholar
Carlsson, N.O.L., Brönmark, C. & Hansson, L.A. (2004). Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85: 15751580.Google Scholar
Carrete, G. & Wiens, J.J. (2012). Why are there so few fish in the sea? Proceedings of the Royal Society B: Biological Sciences 279 : 23232329.Google Scholar
Carroll, M.J., Heinemeyer, A., Pearce-Higgins, J.W., Dennis, P., West, C., Holden, J., Wallage, Z.E. & Thomas, C.D. (2015). Hydrologically-driven ecosystem processes determine the distribution and survival of ecosystem-specialist predators under climate change. Nature Communications 6: 7851. https://doi.org/10.1038/ncomms8851Google Scholar
Castello, L. & Macedo, M.N. (2016). Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 9901007.Google Scholar
Castello, L., McGrath, D.G., Hess, L.L., Coe, M.T., Lefebvre, P.A., Petry, P., Macedo, M.N., Renó, V.F. & Arantes, C.C. (2013). The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6: 217229.Google Scholar
Castello, L., Arantes, C.C., McGrath, D. G., Stewart, D.J. & De Sousa, F.S. (2015a). Understanding fishing-induced extinctions in the Amazon. Aquatic Conservation: Marine and Freshwater Ecosystems 25: 587598.Google Scholar
Castello, L., Isaac, V.I.N. & Thapa, R. (2015b). Flood pulse effects on multispecies fishery yields in the Lower Amazon. Royal Society Open Science 2: 150299.CrossRefGoogle ScholarPubMed
Cataldo, D., O’Farrell, I., Paolucci, E., Sylvester, F. & Boltovskoy, D. (2012). Impact of the invasive golden mussel (Limnoperna fortunei) on phytoplankton and nutrient cycling. Biological Invasions 7: 91100.Google Scholar
Ceballos, G., Ehrlich, P.R. & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America 114: E6089E6096.Google Scholar
Charlier, R.H., Chaineux, M.C.P. & Morcos, S. (2005). Panorama of the history of coastal protection. Journal of Coastal Research 21: 79111.CrossRefGoogle Scholar
Chellaiah, D. & Yule, C. (2018). Riparian buffers mitigate impacts of oil palm plantations on aquatic macroinvertebrate community structure in tropical streams of Borneo. Ecological Indicators 95: 5362.Google Scholar
Chen, D., Duan, X., Liu, S. & Shi, W. (2004). Status and management of the fisheries resources of the Yangtze River. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Vol. 1 (Welcomme, R., R. & Petr, T., eds), FAO Regional Office for Asia and the Pacific, Bangkok: pp. 173182.Google Scholar
Chen, D., Xiong, F., Wang, K. & Chang, Y. (2009). Status of research on Yangtze fish biology and fisheries. Environmental Biology of Fishes 85: 337357.Google Scholar
Chen, Y. & Zhu, S. (2008). Change of fish fauna and long-term dynamics of the harvest of aquatic product in a large shallow lake (Lake Taihu, China). Journal of Fisheries and Aquatic Science 3: 7276.Google Scholar
Cheng, L., Opperman, J.J., Tickner, D., Speed, R., Guo, Q. & Chen, D. (2018). Managing the Three Gorges Dam to implement environmental flows in the Yangtze River. Frontiers in Environmental Science 6: 64. www.frontiersin.org/article/10.3389/fenvs.2018.00064Google Scholar
Chessman, B.C. (2013). Do protected areas benefit freshwater species? A broadscale assessment of fish in Australia’s Murray-Darling Basin. Journal of Applied Ecology 50: 969976.CrossRefGoogle Scholar
Cheung, S.M. & Dudgeon, D. (2006). Quantifying the Asian turtle crisis: market surveys in southern China 2000-2003. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 751770.Google Scholar
Chichilnisky, G. & Heal, G. (1998). Economic returns from the biosphere. Nature 391: 629630.Google Scholar
Chowdhury, G.W., Zieritz, A. & Aldridge, D.C. (2016). Ecosystem engineering by mussels supports biodiversity and water clarity in a heavily polluted lake in Dhaka, Bangladesh. Freshwater Science 35: 188199.CrossRefGoogle Scholar
Chu, C., Ellis, L. & Kerckhove, D.T. (2018). Effectiveness of terrestrial protected areas for conservation of lake fish communities. Conservation Biology 32: 607618.Google Scholar
Chucholl, C. (2013). Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biological Invasions 15: 125141.Google Scholar
Ciechanowski, M., Kubic, W., Rynkiewicz, A. & Zwolicki, A. (2011). Reintroduction of beavers Castor fiber may improve habitat quality for vespertilionid bats foraging in small river valleys. European Journal of Wildlife Research 57: 737747.Google Scholar
Cinner, J.E., Daw, T. & McClanahan, T.R. (2009). Socioeconomic factors that affect artisanal fishers’ readiness to exit a declining fishery. Conservation Biology 23: 124130.Google Scholar
Clarke, A., Mac Nally, R., Bond, N. & Lake, P.S. (2008). Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 17071721.Google Scholar
Clausnitzer, V., Kalkman, V.J., Ram, M., Collen, B., Baillie, J.E.M., Bedjanič, M., Darwall, W.R.T., Dijkstra, K.-D.B., Dow, R., Hawking, J., Karube, H., Malikova, E., Paulson, D., Schütte, K., Suhling, F., Villanueva, R.J., von Ellenrieder, N. & Wilson, K. (2009). Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biological Conservation 142: 18641869.Google Scholar
Clavero, M. & García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution 20: 110.Google Scholar
Cline, T.J., Bennington, V. & Kitchell, J.F. (2013). Climate change expands the spatial extent and duration of preferred thermal habitat for Lake Superior fishes. PLoS ONE 8: e62279. https://doi.org/10.1371/journal.pone.0062279Google Scholar
Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009). Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge. FAO Fisheries and Aquaculture Technical Paper. No. 530. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Cochran-Biederman, J., Wyman, K., French, W. & Loppnow, G. (2014). Identifying correlates of success and failure of native freshwater fish reintroductions. Conservation Biology 29: 175186.Google Scholar
Cochran‐Biederman, J.L., Wyman, K.E., French, W.E. & Loppnow, G.L. (2015). Identifying correlates of success and failure of native freshwater fish reintroductions. Conservation Biology 29: 175186.Google Scholar
Coe, M.T. & Foley, J.A. (2001). Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research 106: 33493356.Google Scholar
Cohen, A.S., Gergurich, E.L., Kraemer, B.M., McGlue, M.M., McIntyre, P.B., Russell, J.M., Simmons, J.D. & Swarzenski, P.W. (2016). Climate and fishery declines in Lake Tanganyika. Proceedings of the National Academy of Sciences of the United States of America 113: 95639568.Google Scholar
Cohen, M.J., Creed, I.F., Alexander, L., Basu, N.B., Calhoun, A.J.K., Craft, C., D’Amico, E., DeKeyser, E., Fowler, L., Golden, H.E., Jawitz, J.W., Kalla, P., Kirkman, L.K., Lane, C.R., Lang, M., Leibowitz, S.G., Lewis, D.B., Marton, J., McLaughlin, D.L., Mushet, D.M., Raanan-Kiperwas, H., Rains, M.C., Smith, L.C. & Walls, S.C. (2016). Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences of the United States of America 113: 19781986.Google Scholar
Cole, E. & Newton, M. (2013). Influence of streamside buffers on stream temperature response following clear-cut harvesting in western Oregon. Canadian Journal of Forest Research 43: 9931005.Google Scholar
Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R. & Baillie, J.E.M. (2009). Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology 23: 317327.Google Scholar
Collen, B., Whitton, F., Dyer, E.E., Baillie, J.E.M., Cumberlidge, N., Darwall, W.R.T., Pollock, C., Richman, N.I., Soulsby, A. & Böhm, M. (2014). Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 4051.Google Scholar
Collier, K.J. (2017). Measuring river restoration success: are we missing the boat? Aquatic Conservation: Marine and Freshwater Ecosystems 27: 572577.Google Scholar
Compagno, L.J.V. & Cook, S.F. (1995). The exploitation and conservation of freshwater elasmobranchs: status of taxa and prospects for the future. Journal of Aquariculture & Aquatic Sciences 7: 6290.Google Scholar
Comte, L. & Grenouillet, G. (2013). Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36: 12361246.Google Scholar
Comte, L., Bouisson, L., Daufresne, M. & Grenouillet, G. (2013). Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology 58: 625639.Google Scholar
Convention on Biological Diversity (2016). Inland Waters Biodiversity. Convention on Biological Diversity [online]. www.cbd.int/watersGoogle Scholar
Conti, L., Comte, L., Hugueny, B. & Grenouillet, G. (2015). Drivers of freshwater fish colonisations and extirpations under climate change. Ecography 38: 510519.CrossRefGoogle Scholar
Conti, L., Schmidt-Kloiber, A., Grenouillet, G. & Graf, W. (2014). A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721: 297315.Google Scholar
Copp, G.H., Bianco, P.G., Bogutskaya, N.G., Eros, T., Falka, I., Ferreira, M.T., Fox, M.G., Freyhof, J., Gozlan, R.E., Grabowska, J., Kovac, V., Moreno-Amich, R., Naseka, A.M., Penaz, M., Povz, M., Przybylski, M., Robillard, M., Russell, I.C., Stakenas, S., Sumer, S., Vila-Gispert, A. & Wiesner, C. (2005). To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242262.Google Scholar
Cordell, J.R. (2012). Invasive freshwater copepods of North America. In A Handbook of Global Freshwater Invasive Species (Francis, R.A., ed.), Earthscan, Oxford: pp. 161172.Google Scholar
Corlett, R.T. (2016). Restoration, reintroduction, and rewilding in a changing world. Trends in Ecology & Evolution 31: 453462.Google Scholar
Correa, S.B., Costa-Pereira, R., Fleming, T., Goulding, M. & Anderson, J.T. (2015). Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation. Biological Reviews 90: 12631278.Google Scholar
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature 387: 253260.Google Scholar
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S. & Turner, R.K. (2014). Changes in the global value of ecosystem services. Global Environmental Change 26: 152158.Google Scholar
Cottingham, K.L., Ewing, H.A., Greer, M.L., Carey, C.C. & Weathers, K.C. (2015). Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere 6: 119.Google Scholar
Courchamp, F., Angulo, E., Rivalan, P., Hall, R.J., Signoret, L., Bull, L. & Meinard, Y. (2006). Rarity value and species extinction: the anthropogenic Allee effect. PLoS Biol 4: e415. https://doi.org/10.1371/journal.pbio.0040415Google Scholar
Cowx, I.G., Arlinghaus, R. & Cooke, S.J. (2010). Harmonizing recreational fisheries and conservation objectives for aquatic biodiversity in inland waters. Journal of Fish Biology 76: 21942215.Google Scholar
Craig, J.F., Halls, A.S., Barr, J.J.F. & Bean, C.W. (2004). The Bangladesh floodplain fisheries. Fisheries Research 66: 271286.Google Scholar
Creed, I.F., Lane, C.R., Serran, J.N., Alexander, L.C., Basu, N.B., Calhoun, A.J.K., Christensen, J.R., Cohen, M.J., Craft, C., D’Amico, E., DeKeyser, E., Fowler, L., Golden, H.E., Jawitz, J.W., Kalla, P., Kirkman, L.K., Lang, M., Leibowitz, S.G., Lewis, D.B., Marton, J., McLaughlin, D.L., Raanan-Kiperwas, H., Rains, M.C., Rains, K.C. & Smith, L. (2017). Enhancing protection for vulnerable waters. Nature Geoscience 10: 809815.Google Scholar
Crutzen, P.J. (2002). Geology of mankind. Nature 415: 23.Google Scholar
Cucherousset, J., Boulêtreau, S., Azémar, F., Compin, A., Guillaume, M. & Santoul, F. (2012). ‘Freshwater killer whales’: beaching behavior of an alien fish to hunt land birds. PLoS ONE 7: e50840. https://doi.org/10.1371/journal.pone.0050840Google Scholar
Cumberlidge, N., Ng, P.K.L., Yeo, D.C.J., Magalhaes, C., Campos, M.R., Alvarez, F., Naruse, T., Daniels, S.R., Esser, L.J., Attipoe, F.Y.K., Clotilde-Ba, F.L., Darwall, W., McIvor, A., Ram, M. & Collen, B. (2009). Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological Conservation 142: 16651673.Google Scholar
Dahanukar, N. & Raghavan, R. (2011). Hypselobarbus mussullah. The IUCN Red List of Threatened Species 2011: e.T172446A6893728. http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T172446A6893728.en.Google Scholar
Dalin, C., Wada, Y., Kastner, T. & Puma, M.J. (2017). Groundwater depletion embedded in international food trade. Nature 543: 700704.Google Scholar
Danell, K. (1996). Introduction of aquatic rodents: lessons of the Ondatra zibethicus invasion. Wildlife Biology 2: 213220.Google Scholar
Darby, S. & Seer, D. (2008). River Restoration: Managing the Uncertainty in Restoring Physical Habitat. John Wiley & Sons Ltd, Chichester.Google Scholar
Darrigran, G. & Damborenea, C. (2005). A South American bioinvasion case history: Limnoperna fortunei (Dunker, 1857), the golden mussel. American Malacological Bulletin 20: 105112.Google Scholar
Darwall, W., Smith, K., Allen, D., Holland, R., Harrison, I. & Brooks, E. (2011a). The Diversity of Life in African Freshwaters: Underwater, under Threat. IUCN, Cambridge, UK & Gland, Switzerland.Google Scholar
Darwall, W.R.T., Holland, R.A., Smith, K.G., Allen, D.J., Brooks, E.G.E., Katarya, V., Pollock, C.M., Shi, Y., Clausnitzer, V., Cumberlidge, N., Cuttelod, A., Dijkstra, K.-D., Diop, M.D., García, N., Seddon, M.B., Skelton, P.H., Snoeks, J., Tweddle, D. & Vie, J.-C. (2011b). Implications of bias in conservation research and investment for freshwater species. Conservation Letters 4: 474482.Google Scholar
Darwall, W., Bremerich, V., De Wever, A., Dell, A.I., Freyhof, J., Gessner, M.O., Grossart, H.-P., Harrison, I., Irvine, K., Jähnig, S.C., Jeschke, J.M., Lee, J.J., Lu, C., Lewandowska, A.M., Monaghan, M.T., Nejstgaard, J.C., Patricio, H., Schmidt-Kloiber, A., Stuart, S.N., Thieme, M., Tockner, K., Turak, E. & Weyl, O. (2018). The Alliance for Freshwater Life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Research 28: 10151022.Google Scholar
Datry, T., Fritz, K. & Leigh, C. (2016). Challenges, developments and perspectives in intermittent river ecology. Freshwater Biology 61: 11711180.Google Scholar
Daufresne, M., Lengfellner, K. & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 1278812793.Google Scholar
Dawson, J., Patel, F., Griffiths, R.A. & Young, R.P. (2016). Assessing the global zoo response to the amphibian crisis through 20-year trends in captive collections. Conservation Biology 30: 8291.Google Scholar
Dawson, W., Moser, D., van Kleunen, M., Kreft, H., Pergl, J., Pyšek, P., Weigelt, P., Winter, M., Lenzner, B., Blackburn, T.M., Dyer, E.E., Cassey, P., Scrivens, S.L., Economo, E.P., Guénard, B., Capinha, C., Seebens, H., García-Díaz, P., Nentwig, W., García-Berthou, E., Casal, C., Mandrak, N.E., Fuller, P., Meyer, C. & Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution 1: 0186.Google Scholar
Day, J.J., Bills, R. & Friel, J.P. (2009). Lacustrine radiations in African Synodontis catfish. Journal of Evolutionary Biology 22: 805817.Google Scholar
Deacon, A.E., Ramnarine, I.W. & Magurran, A.E. (2011). How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6: e24416. https://doi.org/10.1371/journal.pone.0024416Google Scholar
Deines, A.M., Bunnell, D.B., Rogers, M.W., Beard, T.D. & Taylor, W.W. (2015). A review of the global relationship among freshwater fish, autotrophic activity, and regional climate. Reviews in Fish Biology and Fisheries 25: 323336.Google Scholar
Denic, M. & Geist, J. (2015). Linking stream sediment deposition and aquatic habitat quality in pearl mussel streams: implications for conservation. River Research and Applications 31: 943952.Google Scholar
de Senerpont Domis, L.N., Elser, J.J., Gsell, A.S., Huszar, V.L.M, Ibelings, B.W., Jeppesen, E., Kosten, S., Mooij, W.M., Roland, F., Sommer, U., van Donk, E., Winder, M. & Lürling, M. (2013). Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58463482.Google Scholar
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Martin, P.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America 105: 66686672.Google Scholar
Dias, M.S., Cornu, J.-F., Oberdorff, T., Lasso, C.A. & Tedesco, P.A. (2013). Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36: 683689.Google Scholar
Diaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., Larigauderie, A., Adhikari, J.R., Arico, S., Baldi, A., Bartuska, A., Baste, I.A., Bilgin, A., Brondizio, E., Chan, K.M.A., Figueroa, V.E., Duraiappah, A., Fischer, M., Hill, R., Koetz, T., Leadley, P., Lyver, P., Mace, G.M., Martin-Lopez, B., Okumura, M., Pacheco, D., Pascual, U., Perez, E.S., Reyers, B., Roth, E., Saito, O., Scholes, R.J., Sharma, N., Tallis, H., Thaman, R., Watson, R., Yahara, T., Hamid, Z.A., Akosim, C., Al-Hafedh, Y., Allahverdiyev, R., Amankwah, E., Asah, S.T., Asfaw, Z., Bartus, G., Brooks, L.A., Caillaux, J., Dalle, G., Darnaedi, D., Driver, A., Erpul, G., Escobar-Eyzaguirre, P., Failler, P., Fouda, A.M.M., Fu, B., Gundimeda, H., Hashimoto, S., Homer, F., Lavorel, S., Lichtenstein, G., Mala, W.A., Mandivenyi, W., Matczak, P., Mbizvo, C., Mehrdadi, M., Metzger, J.P., Mikissa, J.B., Moller, H., Mooney, H.A., Mumby, P., Nagendra, H., Nesshover, C., Oteng-Yeboah, A.A., Pataki, G., Roue, M., Rubis, J., Schultz, M., Smith, P., Sumaila, R., Takeuchi, K., Thomas, S., Verma, M., Yeo-Chang, Y. & Zlatanova, D. (2015). The IPBES conceptual framework – connecting nature and people. Current Opinion in Environmental Sustainability 14: 116.Google Scholar
Didžiulis, V. (2013). NOBANIS – Invasive Alien Species Fact Sheet – Anguillicola crassus. Online Database of the European Network on Invasive Alien Species – NOBANIS www.nobanis.org (www.nobanis.org/species-info/?taxaId=18268).Google Scholar
Deiner, K., Fronhofer, E., Mächle, E., Walser, C. & Altermatt, F. (2016). Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications 7: 12544. https://doi.org/10.1038/ncomms12544Google Scholar
Ding, C., Jiang, X., Xie, Z. & Brosse, S. (2017). Seventy-five years of biodiversity decline of fish assemblages in Chinese isolated plateau lakes: widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity. Diversity and Distributions 23: 171184.Google Scholar
Dinh Van, K., Janssens, L., Debecker, S., De Jonge, M., Lambret, P., Nilsson-Örtman, V., Bervoets, L. & Stoks, R. (2013). Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Global Change Biology 19: 26252633.Google Scholar
Domisch, S., Jähnig, S.C. & Haase, P. (2011). Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology 56: 20092020.Google Scholar
Dorts, J., Grenouillet, G., Douxfils, J., Mandiki, S.N.M., Milla, S., Silvestre, F. & Kestemont, P. (2012). Evidence that elevated water temperature affects the reproductive physiology of the European bullhead Cottus gobio. Fish Physiology and Biochemistry 38: 389399.Google Scholar
Douda, K., Vrtílek, M., Slavík, O. & Reichard, M. (2012). The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biological Invasions 14: 127137.Google Scholar
Douda, K., Liu, H.-L., Yu, D., Rouchet, R., Liu, F., Tang, Q.-Y., Methling, C., Smith, C. & Reichard, M. (2017). The role of local adaptation in shaping fish-mussel coevolution. Freshwater Biology 62: 18581868.Google Scholar
Doughty, C.E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E.S., Malhi, Y., Dunning, J.B. & Svenning, J. (2016). Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences of the United States of America 113: 868873.Google Scholar
Downing, A.S., Van Nes, E.H., Janse, J.H., Witte, F., Cornelissen, I.J., Scheffer, M. & Mooij, W.M. (2012). Collapse and reorganization of a food web of Mwanza Gulf, Lake Victoria. Ecological Applications 22: 229239.Google Scholar
Du, Y., Xue, H., Wu, S., Ling, F., Xiao, F. & Wei, X. (2011). Lake area changes in the middle Yangtze region of China over the 20th century. Journal of Environmental Management 92: 12481255.Google Scholar
Ducatelle, R., Nishikawa, K., Nguyen, T.T., Kolby, J.E., Van Bocxlaer, I., Bossuyt, F. & Pasmans, F. (2014). Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346: 630631.Google Scholar
Dudgeon, D. (1999). Tropical Asian Streams: Zoobenthos, Ecology and Conservation. Hong Kong University Press, Hong Kong.Google Scholar
Dudgeon, D. (2010). Requiem for a river: extinctions, climate change and the last of the Yangtze. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 127131.Google Scholar
Dudgeon, D. (2011). Asian river fishes in the Anthropocene: threats and conservation challenges in an era of rapid environmental change. Journal of Fish Biology 79: 14871524.Google Scholar
Dudgeon, D. (2013). Anthropocene extinctions: global threats to riverine biodiversity and the tragedy of the freshwater commons. In River Conservation: Challenges and Opportunities (Sabatier, S. & Elosegi, A., eds), Fundación BBVA, Bilbao: pp. 129167.Google Scholar
Dudgeon, D. (2014). Accept no substitute: biodiversity matters. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 435440.Google Scholar
Dudgeon, D. & Morton, B. (1984). Site selection and attachment duration of Anodonta woodiana (Bivalvia: Unionacea) glochidia on fish hosts. Journal of Zoology, London 204: 355362.Google Scholar
Dudgeon, D. & Smith, R.E.W. (2006). Exotic species, fisheries, and conservation of freshwater biodiversity in tropical Asia: the case of the Sepik River, Papua New Guinea. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 203215.Google Scholar
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z., Knowler, D., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. & Sullivan, C.A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163182.Google Scholar
Dugan, P. (2008). Mainstream dams as barriers to fish migration: international learning and implications for the Mekong. Catch and Culture 14: 915.Google Scholar
Dugan, H.A., Bartlett, S.L., Burke, S.M., Doubek, J.P., Krivak-Tetley, F.E., Skaff, N.K., Summers, J.C., Farrell, K.J., McCullough, I.M., Morales-Williams, A.M., Roberts, D.C., Ouyang, Z., Scordo, F., Hanson, P.C. & Weathers, K.C. (2017). Salting our freshwater lakes. Proceedings of the National Academy of Sciences of the United States of America 114: 44534458.Google Scholar
Dugan, P.J., Barlow, C., Agostinho, A.A., Baran, A., Cada, G.F., Chen, D., Cowx, I.G.,Ferguson, J.W., Jutagate, T., Mallen-Cooper, M., Marmulla, G., Nestler, J.,Petrere, M., Welcomme, R.L. & Winemiller, K.O. (2010). Fish migration, dams, and loss of ecosystem services in the Mekong Basin. Ambio 39 : 344348.Google Scholar
Duggan, I.C. (2010). The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biological Invasions 12: 37573770.Google Scholar
Dumont, H.J. (1994). The distribution and ecology of the fres – and brackish – water medusae of the world. Hydrobiologia 272: 112.Google Scholar
Dunn, H. (2003). Can conservation assessment criteria developed for terrestrial systems be applied to riverine systems? Aquatic Ecosystem Health and Management 6: 8195.Google Scholar
Dunn, J.C. (2012). Pacifastacus leniusculus Dana (North American signal crayfish). In A Handbook of Global Freshwater Invasive Species (Francis, R.A., ed.), Earthscan, Oxford: pp. 195205.Google Scholar
Durance, I. & Ormerod, S.J. (2010). Evidence for the role of climate in the local extinction of a cool-water triclad. Journal of the North American Benthological Society 29: 13671378.Google Scholar
Durance, I., Vaughn, I.P. & Ormerod, S.J. (2009). Evaluating Climatic Effects on Aquatic Invertebrates, Phase II: Review, Comparisons between Regions and Methodological Considerations. Report: SC070047/R1, Environment Agency, Bristol. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291642/scho1209brjt-e-e.pdfGoogle Scholar
Eerkes-Medrano, D., Thompson, R.C. & Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75: 6382.Google Scholar
Ehrlich, P.R. & Pringle, R.M. (2008). Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partical solutions. Proceedings of the National Academy of Sciences of the United States of America 105 (Suppl. 1): 1157911586.Google Scholar
Elbrecht, V. & Leese, F. (2017). Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Frontiers in Environmental Science 5: 11. https://doi.org/10.3389/fenvs.2017.00011Google Scholar
El-Sabaawi, R.W., Frauendorf, T.C., Marques, P.S., Mackenzie, R.A., Manna, L.R., Mazzoni, R., Phillip, D.A.T., Warbanski, M.L. & Zandonà, E. (2016). Biodiversity and ecosystem risks arising from using guppies to control mosquitoes. Biology Letters 12: 20160590; https://doi.org/10.1098/rsbl.2016.0590Google Scholar
Elliott, P., Aldridge, D.C. & Moggridge, G.D. (2008). Zebra mussel filtration and its potential uses in industrial water treatment. Water Resources 42: 16641674.Google Scholar
Ellis, B.K, Stanford, J.A, Goodman, D., Stafford, C.P., Gustafson, D.L, Beauchamp, D.A., Chess, D.W., Craft, J.A., Delerray, M.A. & Hansen, B.S. (2011). Long-term effects of a trophic cascade in a large lake ecosystem. Proceedings of the National Academy of Sciences of the United States 108: 10701075.Google Scholar
Elston, E., Anderson-Lederer, R., Death, R.G. & Joy, M.K. (2015). The Plight of New Zealand’s Freshwater Species. Conservation Science Statement No. 1. Society for Conservation Biology (Oceania), Sydney. https://conbio.org/images/content_groups/Oceania/Scientific_Statement_1_.pdfGoogle Scholar
Elton, C.S. (1958). The Ecology of Invasions by Animals and Plants. Methuen, London.Google Scholar
Emde, S., Rueckert, S., Palm, H.W. & Klimpel, S. (2012). Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS ONE 7: e53218. https://doi.org/10.1371/journal.pone.0053218Google Scholar
Englund, J. & Wilkes, M.A. (2018). Does river restoration work? Taxonomic and functional trajectories at two restoration schemes. Science of the Total Environment 618: 961970.Google Scholar
Eva, B., Harmony, P., Gray, T., Guegan, F., Valentin, A., Miaud, C. & Dejean, T. (2016). Trails of river monsters: detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA. Global Ecology and Conservation 7: 148156.Google Scholar
Everard, M. & Kataria, G. (2011). Recreational angling markets to advance the conservation of a reach of the Western Ramganga River, India. Aquatic Conservation 21: 101108.Google Scholar
Falkenmark, M. & Rockström, J. (2006). The new blue and green water paradigm: breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management 132: 129132.Google Scholar
Fang, J., Wang, X., Zhao, S., Li, Y., Tang, Z., Yu, D., Ni, L., Liu, H., Xie, P., Da, L., Li, Z. & Zheng, C. (2006). Biodiversity changes in the lakes of the central Yangtze. Frontiers in Ecology and the Environment 4: 369377.Google Scholar
Farmer, T.M., Marschall, E.A., Dabrowski, K. & Ludsin, S.A. (2015). Short winters threaten temperate fish populations. Nature Communications 6: 7724. https://doi.org/10.1038/ncomms8724Google Scholar
FAO (2010). The State of World Fisheries and Aquaculture, 2010. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
FAO (2012). The State of World Fisheries and Aquaculture, 2012. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
FAO (2014). The State of World Fisheries and Aquaculture, 2014. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
FAO (2016). The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Faria, V.V., McDavitt, M.T., Charvet, P., Wiley, T.R., Simpfendorfer, C.A. & Naylor, G.J.P. (2013). Species delineation and global population structure of critically endangered sawfishes (Pristidae). Zoological Journal of the Linnean Society 167: 136164.Google Scholar
Feldmeier, S., Schefczyk, L., Wagner, N., Heinemann, G., Veith, M. & Lötters, S. (2016). Exploring the distribution of the spreading lethal salamander chytrid fungus in its invasive range in Europe – a macroecological approach. PLoS ONE 11: e0165682. https://doi.org/10.1371/journal.pone.0165682Google Scholar
Feng, L., Hu, C., Chen, X. & Zhao, X. (2013). Dramatic inundation changes of China’s two largest freshwater lakes linked to the Three Gorges Dam. Environmental Science & Technology 47: 96289634Google Scholar
Fernando, C.H. (2000). A view of the inland fisheries of Sri Lanka: past, present and future. Sri Lanka Journal of Aquatic Science 5: 126.Google Scholar
Ficetola, G.F. (2013). Is interest toward the environment really declining? The complexity of analysing trends using internet search data. Biodiversity and Conservation 22: 29832988.Google Scholar
Filipe, A.F., Markovic, D., Pletterbauer, F., Tisseuil, C., De Wever, A., Schmutz, S., Bonada, N. & Freyhof, J. (2015). Forecasting fish distribution along stream networks: brown trout (Salmo trutta) in Europe. Diversity & Distributions 19: 10591071.Google Scholar
Finn, D.S., Räsänen, K. & Robinson, C.T. (2010). Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Global Change Biology 16: 33143326.Google Scholar
Fischer, J.R., Lewis-Weis, L.A., Tate, C.M., Gaydos, J.K., Gerhold, R.W. & Poppenga, R.H. (2006). Avian vacuolar myelinopathy outbreaks at a southeastern reservoir. Journal of Wildlife Diseases 42: 501510.Google Scholar
Flecker, A.S., Mclntyre, P.B., Moore, J.W., Anderson, J.T., Taylor, B.W. & Hall, R.O. (2010). Migratory fishes as material and process subsidies in riverine ecosystems. American Fisheries Society Symposium 73: 559592.Google Scholar
Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P.B. (2018). Global hidden harvest of freshwater fish revealed by household surveys. Proceedings of the National Academy of Science of the United States of America 115: 76237628.Google Scholar
Foley, J.A, Ramankutty, N., Brauman, K.A, Cassidy, E.S, Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D. & Zaks, D.P.M. (2011). Solutions for a cultivated planet. Nature 478: 337342.Google Scholar
Forero-Medina, G., Joppa, L. & Pimm, S.L. (2011). Constraints to species’ elevational range shifts as climate changes. Conservation Biology 25: 163171.Google Scholar
Fox, A.D., Cao, L., Zhang, Y., Barter, M., Zhao, M.J., Meng, F.J. & Wang, S.L. (2011). Declines in the tuber-feeding waterbird guild at Shengjin Lake National Nature Reserve, China – a barometer of submerged macrophyte collapse. Aquatic Conservation: Marine and Freshwater Ecosystems 21: 8291.Google Scholar
Fox, R., Conrad, K.F., Parsons, M.S., Warren, M.S. & Woiwod, I.P. (2006). The State of Britain’s Larger Moths. Butterfly Conservation and Rothamsted Research, Wareham, Dorset.Google Scholar
Francis, R.A. (2012). A Handbook of Global Freshwater Invasive Species. Earthscan, Oxford.Google Scholar
Franco, D., Sobrane Filho, S., Martins, A., Marmontel, M. & Botero-Arias, R. (2016). The piracatinga, Calophysus macropterus, production chain in the Middle Solimões River, Amazonas, Brazil. Fisheries Management and Ecology 23: 109118.Google Scholar
Freeman, M.C., Pringle, C.M. & Jackson, C.R. (2007). Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. Journal of the American Water Resources Association 43: 514.Google Scholar
French, M., Alem, N., Edwards, S.J., Blanco Coariti, E., Cauthin, H., Hudson-Edwards, K.A., Luyckx, K., Quintanilla, J. & Sánchez Miranda, O. (2017). Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano. Environmental Management 60: 555573.Google Scholar
Freyhof, J. & Kottelat, M. (2008). Hucho hucho. The IUCN Red List of Threatened Species 2008: e.T10264A3186143. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T10264A3186143.enGoogle Scholar
Froese, R. & Pauly, D. (2018). FishBase. World Wide Web electronic publication, www.fishbase.org version (06/2018).Google Scholar
Fryxell, D.C., Arnett, H.A., Apgar, T.M., Kinnison, M.T. & Palkovacs, E.P. (2015). Sex ratio variation shapes the ecological effects of a globally introduced freshwater fish. Proceedings of the Royal Society B 282: 20151970. http://doi.org/10.1098/rspb.2015.1970Google Scholar
Fu, C., Wu, J., Chen, J., Wu, Q. & Lei, G. (2003). Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodiversity and Conservation 12: 16491685.Google Scholar
Fukushima, M., Shimazaki, H., Rand, P.S. & Kaeriyama, M. (2011). Reconstructing Sakhalin taimen Parahucho perryi historical distribution and identifying causes for local extinctions. Transactions of the American Fisheries Society 140: 113.Google Scholar
Funge‐Smith, S. & Bennett, A. (2019). A fresh look at inland fisheries and their role in food security and livelihoods. Fish and Fisheries: in press. https://doi.org/10.1111/faf.12403Google Scholar
Galbraith, H.S., Zanatta, D.T. & Wilson, C.C. (2015). Comparative analysis of riverscape genetic structure in rare, threatened and common freshwater mussels. Conservation Genetics 16: 845857.Google Scholar
Gallardo, B. & Aldridge, D.C. (2015). Is Great Britain heading for a Ponto–Caspian invasional meltdown? Journal of Applied Ecology 52: 4149.Google Scholar
Gallardo, B., Clavero, M., Sánchez, M.I. & Vilà, M. (2015). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 21: 151163.Google Scholar
Gao, H., Bohn, T.J., Podest, F., McDonald, K.C. & Lettenmaier, D.P. (2011). On the causes of the shrinking of Lake Chad. Environmental Research Letters 6: 034021. http://doi.org/10.1088/1748-9326/6/3/034021Google Scholar
Gao, Z., Li, Y. & Wang, W. (2008). Threatened fishes of the world: Myxocyprinus asiaticus Bleeker 1864 (Catostomidae). Environmental Biology of Fishes 83: 345346.Google Scholar
Garcia, S.M., Kolding, J., Rice, J., Rochet, M.-J., Zhou, S., Arimoto, T., Beyer, J.E., Borges, L., Bundy, A., Dunn, D., Fulton, E.A., Hall, M., Heino, M., Law, R., Makino, M., Rijnsdorp, A.D., Simard, F. & Smith, A.D.M. (2012). Reconsidering the consequences of selective fisheries. Science 335: 10451047.Google Scholar
García-Berthou, E., Alcaraz, C., Pou-Rovira, Q., Zamora, L., Coenders, G. & Feo, C. (2005). Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453463.Google Scholar
Garvey, J.E. (2012). Bigheaded carps of the genus Hypophthalmichthys. In A Handbook of Global Freshwater Invasive Species (Francis, R.A., ed.), Earthscan, Oxford: pp. 235245.Google Scholar
Geerts, A.N., Vanoverbeke, J., Vanschoenwinkel, B., Van Doorslaer, W., Feuchtmayr, H., Atkinson, D., Moss, B., Davidson, T.A., Sayer, C.D. & De Meester, L. (2015). Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Climate Change 5: 665668.Google Scholar
Gende, S.M., Edwards, R.T., Willson, M.F. & Wipfli, M.S. (2002). Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52: 917928.Google Scholar
Gedney, N., Cox, P.M., Betts, R.A., Boucher, O., Huntingford, C. & Stott, P.A. (2006). Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439: 835838.Google Scholar
Gerstner, C.L., Ortega, H., Sanchez, H. & Graham, D.L. (2006). Effects of the freshwater aquarium trade on wild fish populations in differentially-fished areas of the Peruvian Amazon. Journal of Fish Biology 68: 862875.Google Scholar
Gerten, D., Rost, S., von Bloh, W. & Lucht, W. (2008). Causes of change in 20th century global river discharge. Geophysical Research Letters 35: L20405. http://doi.org/10.1029/2008GL035258Google Scholar
Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M. & Pastor, A.V. (2013). Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Current Opinion in Environmental Sustainability 5: 551558.Google Scholar
Geyer, R., Jambeck, J. & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances 3: e1700782. http://doi.org/10.1126/sciadv.1700782Google Scholar
Gherardi, F., Britton, J.R., Mavuti, K.M., Pacini, N., Grey, J., Tricarico, E. & Harper, D.M. (2011). A review of allodiversity in Lake Naivasha, Kenya: developing conservation actions to protect East African lakes from the negative impacts of alien species. Biological Conservation 144: 25852596Google Scholar
Giam, X., Ng, H.T., Lok, A.F.S.L. & Ng, H.H. (2011). Local geographic range predicts freshwater fish extinctions in Singapore. Journal of Applied Ecology 48: 356363.Google Scholar
Giam, X., Koh, L.P., Tan, H.H., Miettinen, J., Tan, H.T.W. & Ng, P.K.L. (2012). Global extinctions of freshwater fishes follow peatland conversion in Sundaland. Frontiers in Ecology and the Environment 10: 465470.Google Scholar
Giam, X., Hadiaty, R.K., Tan, H.H., Parenti, L.R., Wowor, D., Sauri, S., Chong, K.Y., Yeo, D.C.J. & Wilcove, D.S. (2015). Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia. Conservation Biology 29: 13571367.Google Scholar
Giersch, J.J., Jordan, S., Luikart, G., Jones, L.A., Hauer, F.R. & Muhlfeld, C.C. (2015). Climate-induced range contraction of a rare alpine aquatic invertebrate. Freshwater Science 34: 5365.Google Scholar
Giesen, W. (1994). Indonesia’s major freshwater lakes: a review of our current knowledge, development processes and threats. Mitteilungen Internationale Vereinigung Limnologie 24: 115128.Google Scholar
Geist, J. (2010). Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): a synthesis of conservation genetics and ecology. Hydrobiologia 644: 6988.Google Scholar
Gilbert, M.A. & Granath, W.O. (2003). Whirling disease and salmonid fish: life cycle, biology, and disease. Journal of Parasitology 89: 658667.Google Scholar
Gilbert, N. (2015). Europe sounds alarm over freshwater pollution. Nature News: 2 March 2015. http://doi.org/doi:10.1038/nature.2015.17021Google Scholar
Glaubrecht, M. (2008). Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: morphology and systematization of a paludomid species flock in an ancient lake. Zoosystematics and Evolution 84: 71122.Google Scholar
Gleick, P.H. (1996). Water resources. In Encyclopedia of Climate and Weather (Schneider, S.H., ed.), Oxford University Press, Oxford: pp. 817823.Google Scholar
Goldberg, C.S., Sepulveda, A., Ray, A., Baumgardt, J. & Waits, L.P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science 32: 792800.Google Scholar
Goldberg, C.S., Strickler, K.M. & Pilliod, D.S. (2015). Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation 183: 13.Google Scholar
Goldschmidt, T., Witte, F. & Wanink, J. (1993). Cascading effects of the introduced Nile perch on the detritivorous/planktivorous species in the sublittoral areas of Lake Victoria. Conservation Biology 7: 686700.Google Scholar
Goulsen, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50: 977987.Google Scholar
Gowdy, J. & Lang, H. (2016). The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: An Evolutionary Approach to Environment and Development. United Nations Environment Programme, Nairobi.Google Scholar
Gozlan, R.E. (2008). Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9: 106115.Google Scholar
Gozlan, R.E., St-Hilaire, S., Feist, S.W., Martin, P. & Kent, M.L. (2005). Disease threat to European fish. Nature 435: 1046.Google Scholar
Grabowski, Z.J., Chang, H., Granek, E.F. (2018). Fracturing dams, fractured data: empirical trends and characteristics of existing and removed dams in the United States. River Research and Applications 34: 526537.Google Scholar
Granek, E.F., Madin, E.M., Brown, M.A., Figueira, W., Cameron, D.S., Hogan, Z., Kristianson, G., de Villiers, P., Williams, J.E., Post, J., Zahn, S. & Arlinghaus, R. (2008). Engaging recreational fishers in management and conservation: global case studies. Conservation Biology 22: 11251134.Google Scholar
Gray, M.J., Miller, D.L. & Hoverman, J.T. (2009). Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms 87: 243266.Google Scholar
Greig, H.S., Kratina, P., Thompson, P.L., Palen, W.J., Richardson, J.S. & Shurin, J.B. (2012). Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Global Change Biology 18: 504514.Google Scholar
Griffiths, A.M., Ellis, J.S., Clifton-Dey, D., Machado-Schiaffino, G., Bright, D., Garcia-Vazquez, E. & Stevens, J.R. (2011). Restoration versus recolonisation: the origin of Atlantic salmon (Salmo salar L.) currently in the River Thames. Biological Conservation 144: 27332738.Google Scholar
Griffiths, R.A. & Pavajeau, L. (2008). Captive breeding, reintroduction, and the conservation of amphibians. Conservation Biology 22: 852861.Google Scholar
Griggs, D., Stafford-Smith., M., Gaffney, O., Rockström, J., Ohman, M.C., Shyamsunbdar, P., Steffen, W., Glaser, G., Kanie, N. & Noble, I. (2013). Sustainable development and goals for people and planet. Nature 495: 305307.Google Scholar
Grill, G., Lehner, B., Lumsdon, A.E., MacDonald, G.K., Zarfl, C. & Reidy Liermann, C. (2015). An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters 10: 015001. http://dx.doi.org/10.1088/1748-9326/10/1/015001Google Scholar
Guimarães Frederico, R., Zuanon, J. & De Marco, P. (2018). Amazon protected areas and its ability to protect stream-dwelling fish fauna. Biological Conservation 219: 1219.Google Scholar
Gupta, N., Sivakumar, K., Mathur, V.B. & Chadwick, M.A. (2014). The ‘tiger of Indian rivers’: stakeholders’ perspectives on the golden mahseer as a flagship fish species. Area 46: 389397.Google Scholar
Gustavsen, K., Hopkins, A. & Sauerbrey, M. (2011). Onchocerciasis in the Americas: from arrival to (near) elimination. Parasites & Vectors 4: 205. http://doi.org/10.1186/1756-3305-4-205Google Scholar
Hadley, K.R., Patterson, A.M., Reid, R.A., Rusak, J.A., Somers, K.M., Ingram, R. & Smol, J.P. (2015). Altered pH and reduced calcium levels drive near extirpation of native crayfish, Cambarus bartonii, in Algonquin Park, Ontario, Canada. Freshwater Science 34: 918932.Google Scholar
Hall, S.J., Hilborn, R., Andrew, N.L. & Allison, E.H. (2013). Innovations in capture fisheries are an imperative for nutrition security in the developing world. Proceedings of the National Academy of Sciences of the United States of America 110: 83938398.Google Scholar
Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A, Sumser, H., Hörren, T., Goulson, D. & de Kroonet, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12: e0185809. https://doi.org/10.1371/journal.pone.0185809Google Scholar
Halls, A.S. & Kshatriya, M. (2009). Modelling the Cumulative Barrier and Passage Effects of Mainstream Hydropower Dams on Migratory Fish Populations in the Lower Mekong Basin. MRC Technical Paper No. 25, Mekong River Commission, Vientiane.Google Scholar
Hampton, S.E., Izmest’eva, L.R., Moore, M.V., Katz, S.L., Dennis, B. & Silow, E.A. (2008). Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change Biology 14: 19471958.Google Scholar
Hampton, S.E., Gray, D.K., Izmest’eva, L.R., Moore, M.V., Ozersky, T. & Ianora, A. (2014). The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia. PLoS ONE 9: e88920. https://doi.org/10.1371/journal.pone.0088920Google Scholar
Han, X., Feng, L., Hu, C. & Chen, X. (2018). Wetland changes of China’s largest freshwater lake and their linkage with the Three Gorges Dam. Remote Sensing of Environment 204: 799811.Google Scholar
Hannah, L., Costello, C., Elliot, V., Owashi, B., Nam, S., Oyanedel, R., Chea, R., Vibrol, O., Phen, C. & McDonald, G. (2019). Designing freshwater protected areas (FPAs) for indiscriminate fisheries. Ecological Modelling 393: 127134.Google Scholar
Hansen, G.J.A., Hein, C.L., Roth, B.M., Vander Zanden, M.J., Gaeta, J.W., Latzka, A.W. & Carpenter, S.R. (2013). Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences 70: 11091122.Google Scholar
Hardiman, J.M. & Mesa, M.J. (2014). The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios. Climatic Change 24: 413426.Google Scholar
Hardin, G. (1968). The tragedy of the commons. Science 162: 1243–1248.Google Scholar
Harding, G., Griffiths, R.A. & Pavajeau, L. (2016). Developments in amphibian captive breeding and reintroduction programs. Conservation Biology 30: 340349.Google Scholar
Harrison, I.J. & Stiassny, M.L.J. (1999). The quiet crisis: a preliminary listing of the freshwater fishes of the world that are extinct or ‘missing in action’. In Extinctions in Near Time (MacPhee, R.D.E., ed.), Kluwer Academic/Plenum Publishers, New York, USA, pp. 271331.Google Scholar
Harrison, I.J., Green, P.A., Farrell, T.A., Juffe-Bignoli, D., Sáenz, L. & Vörösmarty, C.J. (2016). Protected areas and freshwater provisioning: a global assessment of freshwater provision, threats and management strategies to support human water security. Aquatic Conservation: Marine and Freshwater Ecosystems 26 (Suppl. 1): 103120.Google Scholar
Harper, M.P. & Peckarsky, B.L. (2006). Emergence cues of a mayfly in a high altitude stream ecosystem: implications for consequences of climate change. Ecological Applications 16: 612621.Google Scholar
Hart, D.D. & Calhoun, A.J.K. (2010). Rethinking the role of ecological research in the sustainable management of freshwater ecosystems. Freshwater Biology 55 (Suppl. 1): 258269.Google Scholar
Hassall, C. (2015). Odonata as candidate macroecological barometers for global climate change. Freshwater Science 34: 10401049.Google Scholar
Hassall, C., Thompson, D.J., French, C.G. & Harvey, I.F. (2007). Historical changes in the phenology of British Odonata are related to climate. Global Change Biology 13: 933941.Google Scholar
Havel, J.E., Kovalenko, K.E., Thomaz, S.M., Amalfitano, S. & Kats, L.B. (2015). Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147170.Google Scholar
Hayden, B., McLoone, P., Coyne, J. & Caffrey, J.M. (2014). Extensive hybridisation between roach, Rutilus rutilus L., and common bream, Abramis brama L., in Irish lakes and rivers. Biology & Environment: Proceedings of the Royal Irish Academy 114: 15.Google Scholar
Hayes, K.A., Joshi, R.C., Thiengo, C.S. & Cowie, R.H. (2008). Out of South America: multiple origins of non-native apple snails in Asia. Diversity and Distributions 14: 701712.Google Scholar
Haynes, J.M., Tisch, N.A., Mayer, C.M. & Rhyne, R.S. (2005). Benthic macroinvertebrate communities in southwestern Lake Ontario following invasion of Dreissena and Echinogammarus. Journal of the North American Benthological Society 24: 148167.Google Scholar
Haynie, R.H., Bowerman, W.W., Williams, S.K., Morrison, J.R., Grizzle, J.R., Fischer, J.R. & Wilde, S.B. (2013). Are triploid grass carp suitable for aquatic vegetation management in systems affected by avian vacuolar myelinopathy? Journal of Aquatic Animal Health 25: 252259.Google Scholar
Hecky, R.E., Mugidde, R., Ramlal, P.S., Talbot, M.R. & Kling, G.W. (2010). Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshwater Biology 55: 1942.Google Scholar
Heino, J., Virkkala, R. & Toivonen, H. (2009). Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 3954.Google Scholar
Hekkala, E., Shirley, M.H., Amato, G., Austin, J.D., Charter, S., Thorbjarnarson, J., Vliet, K.A., Houck, M.L., Desalle, R. & Blum, M.J. (2011). An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Molecular Ecology 2041994215.Google Scholar
Helfield, J.M. & Naiman, R.J. (2006). Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9: 167180.Google Scholar
Herbert, M.E., McIntyre, P.B., Doran, P.J., Allen, J.D. & Abell, R. (2010). Terrestrial reserve networks do not adequately represent aquatic ecosystems. Conservation Biology 24: 10021011.Google Scholar
Hermoso, V., Abell, R., Linke, S. & Boon, P. (2016). The role of protected areas for freshwater biodiversity conservation: challenges and opportunities in a rapidly changing world. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 311.Google Scholar
Hermoso, V.L., Januchowski-Hartley, S., Linke, S., Dudgeon, D., Petry, P. & McIntyre, P.B. (2017). Optimal allocation of Red List assessments to guide conservation of biodiversity in a rapidly changing world. Global Change Biology 23: 35253532.Google Scholar
Hermoso, V., Filipe, A.F., Segurado, P. & Beja, P. (2018). Freshwater conservation in a fragmented world: dealing with barriers in a systematic planning framework. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 1725.Google Scholar
Herrmann, K.K. & Sorensen, R.E. (2009). Seasonal dynamics of two mortality-related trematodes using an introduced snail. Journal of Parasitology 95: 823828.Google Scholar
Hershner, C. & Havens, K.J. (2008). Managing invasive aquatic plants in a changing system: strategic consideration of ecosystem services. Conservation Biology 22: 544550.Google Scholar
Hes, D. & du Plessis, C. (2014). Designing for Hope: Pathways to Regenerative Sustainability. Routledge, Abingdon.Google Scholar
Hewitt, N., Klenk, N., Smith, A.L., Bazely, D.R., Yan, N., Wood, S., MacLellan, J.I., Lipsig-Mumme, C. & Henriques, I. (2011). Taking stock of the assisted migration debate. Biological Conservation 144: 25602572.Google Scholar
Hicks, B.J., Ling, N. & Daniel, A.J. (2012). Cyprinus carpio L. (common carp). A Handbook of Global Freshwater Invasive Species (Francis, R.A., ed.), Earthscan, Oxford: pp. 247260.Google Scholar
Hirschfeld, M., Blackburn, D.C., Doherty-Bone, T.M., Gonwouo, L.N., Ghose, S. & Rödel, M.-O. (2016). Dramatic declines of montane frogs in a Central African biodiversity hotspot. PLoS ONE 11: e0155129. https://doi.org/10.1371/journal.pone.0155129Google Scholar
Hitt, N.P., Eyler, S. & Wofford, J.E. (2012). Dam removal increases American eel abundance in distant headwater streams. Transactions of the American Fisheries Society 141: 11711179.Google Scholar
Hof, C., Araújo, M.B., Jetz, W. & Rahbek, C. (2011). Additive threats from pathogen, climate and land-use change for global amphibian diversity. Nature 480: 516519.Google Scholar
Hoffmann, R.C. (2001). Frontier foods for Late Medieval consumers: culture, economy, ecology. Environment and History 7: 131167.Google Scholar
Hoffmann, R.C. (2005). A brief history of aquatic resource use in medieval Europe. Helgoland Marine Research 59: 2230.Google Scholar
Hogan, Z. (2013a). A Mekong Giant. Current Status, Threats and Preliminary Conservation Measures for the Critically Endangered Mekong Giant Catfish. WWF, Gland. http://awsassets.panda.org/downloads/mgc_report_june2013.pdfGoogle Scholar
Hogan, Z. (2013b). Catlocarpio siamensis. The IUCN Red List of Threatened Species 2013: e.T180662A7649359. http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T180662A7649359.en.Google Scholar
Hogan, Z. & Jensen, O. (2013). Hucho taimen. The IUCN Red List of Threatened Species 2013: e.T188631A22605180. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T188631A22605180.enGoogle Scholar
Holland, R.A., Darwall, W.R.T. & Smith, K.G. (2012). Conservation priorities for freshwater biodiversity: the key biodiversity area approach refined and tested for continental Africa. Biological Conservation 148: 167179.Google Scholar
Holmstrup, M., Bindesbøl, A.M., Oostingh, G.J., Duschl, A., Scheil, V., Köhler, H.R. & Spurgeon, D.J. (2010). Interactions between effects of environmental chemicals and natural stressors: a review. Science of the Total Environment 408: 37463762.Google Scholar
Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E. & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586: 127141.Google Scholar
Hortle, K.G. (2007). Consumption and yield of fish and other aquatic animals from the lower Mekong Basin. MRC Technical Paper No. 16. Mekong River Commission, Vientiane. http://archive.iwlearn.net/www.mrcmekong.org/download/free_download/technical_paper16.pdfGoogle Scholar
Hortle, K.G. (2009). Fisheries of the Mekong River Basin. In The Mekong: Biophysical Environment of a Transboundary River (Campbell, I.C., ed.), Elsevier, New York: pp. 193253.Google Scholar
Hossain, M.M., Islam, M.A., Ridgway, S. & Matsuishi, T. (2006). Management of inland open water fisheries resources of Bangladesh: issues and options. Fisheries Research 77: 75284.Google Scholar
Howard, S.D. & Bickford, D.P. (2014). Amphibians over the edge: silent extinction rate of data deficient species. Diversity and Distributions 20: 837846.Google Scholar
Howe, C., Suich, H., Vira, B. & Mace, G.M. (2014). Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Global Environmental Change 28: 263275.Google Scholar
Hu, Z., Wang, S., Wu, H., Chen, Q., Ruan, R., Chen, L. & Liu, Q. (2014). Temporal and spatial variation of fish assemblages in Dianshan Lake, Shanghai, China. Chinese Journal of Oceanology and Limnology 32: 799809.Google Scholar
Huang, X.-C., Rong, J., Liu, Y., Zhang, M.-H., Wan, Y., Ouyang, S., Zhou, C.-H. & Wu, X.-P. (2013). The complete maternally and paternally inherited mitochondrial genomes of the endangered freshwater mussel Solenaia carinatus (Bivalvia: Unionidae) and implications for Unionidae taxonomy. PLoS ONE 8: e84352. https://doi.org/10.1371/journal.pone.0084352Google Scholar
Hughes, R.M. (2015). Recreational fisheries in the USA: economics, management strategies, and ecological threats. Fisheries Science 81: 19.Google Scholar
Hulme, P.E. (2003). Biological invasions: winning the science battles but losing the conservation war? Oryx 37: 178193.Google Scholar
Humphries, P. & Winemiller, K.O. (2009). Historical impacts on river fauna, shifting baselines and challenges for restoration. BioScience 59: 673684.Google Scholar
Hurlbert, A.H., Anderson, T.W., Sturm, K.K. & Hurlbert, S.H. (2007). Fish and fish-eating birds at the Salton Sea: a century of boom and bust. Lake and Reservoir Management 23: 469499.Google Scholar
Hyatt, K.D., McQueen, D.J., Shortreed, K.S. & Rankin, D.P. (2004). Sockeye salmon (Oncorhynchus nerka) nursery lake fertilization: review and summary of results. Environmental Reviews 12: 133162.Google Scholar
ICEM (2010). Strategic Environmental Assessment (SEA) of Hydropower of the Mekong Mainstream. Final Report. International Centre for Environmental Management, Hanoi. www.mrcmekong.org/ISH/SEA/WEA-Main-Final.pdf/Google Scholar
Icochea, J., Reichle, S., De la Riva, I., Sinsch, U. & Köhler, J. (2004). Telmatobius culeus. The IUCN Red List of Threatened Species 2004: e.T57334A11623098. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T57334A11623098.en.Google Scholar
IPCC (2018). Summary for Policymakers. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M. & Waterfield, T., eds), World Meteorological Organization, Geneva. www.ipcc.ch/sr15/chapter/summary-for-policy-makers/Google Scholar
IPBES (2019). Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (Díaz, S., Settele, J., Brondizio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., Subramanian, S.M., Midgley, G.F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R.R., Shin, Y.J., Visseren-Hamakers, I. J., Willis, K.J. & Zayas, C.N., eds.), IPBES Secretariat, Bonn. www.ipbes.net/global-assessment-report-biodiversity-ecosystem-servicesGoogle Scholar
Ismail, G.B., Sampson, D.B. & Noakes, D.G. (2014). The status of Lake Lanao endemic cyprinids (Puntius species) and their conservation. Environmental Biology of Fishes 97: 425434.Google Scholar
Isaak, D.J., Wollrab, S., Horan, D.L. & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes. Climatic Change 113: 499524.Google Scholar
Isaak, D.J., Young, M.K., Nagel, D.E., Horan, D.L. & Groche, M.C. (2015). The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Global Change Biology 21: 25402553.Google Scholar
ISSG (Invasive Species Specialist Group) (2015). The Global Invasive Species Database. Version 2015.1. www.iucngisd.org/gisd/Google Scholar
IUCN (2017). The IUCN Red List of Threatened Species 2017.1. International Union for Conservation of Nature and Natural Resources, Cambridge. www.iucnredlist.org/.Google Scholar
IUCN SSC Amphibian Specialist Group (2015). Nectophrynoides asperginisThe IUCN Red List of Threatened Species 2015: e.T54837A16935685. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T54837A16935685.en.Google Scholar
Izmest’eva, L.R., Silow, E.A. & Litchman, E. (2011). Long-term dynamics of Lake Baikal pelagic phytoplankton under climate change. Inland Water Biology 4: 301. https://doi.org/10.1134/S1995082911030102Google Scholar
Izmest’eva, L.R., Moore, M.V., Hampton, S.E., Ferwerda, C.J., Gray, D.K., Woo, K.H., Pislegina, H.V., Krashchuk, L.S., Shimaraeva, S.V. & Silow, E.A. (2016). Lake-wide physical and biological trends associated with warming in Lake Baikal. Journal of Great Lakes Research 42: 617.Google Scholar
Jackson, M.C. & Grey, J. (2012). Accelerating rates of freshwater invasions in the catchment of the River Thames. Biological Invasions 15: 945951.Google Scholar
Jackson, M., Loewen, C.J.G., Vinebrooke, R.D. & Chimimba, C.T. (2016). Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology 22: 180189.Google Scholar
Jackson, R.B., Carpenter, S.R., Dahm, C.N., McKnight, D.M., Naiman, R.J., Postel, S.L. & Running, S.W. (2001). Water in a changing world. Ecological Applications 11:10271045.Google Scholar
Jacobsen, D., Milner, A.M., Brown, L.E. & Dangles, O. (2012). Biodiversity under threat in glacier-fed river systems. Nature Climate Change 2: 361364.Google Scholar
Jacobsen, D., Cauvy-Fraunie, S., Andino, P., Espinosa, R., Cueva, D. & Dangles, O. (2014). Runoff and the longitudinal distribution of macroinvertebrates in a glacier-fed stream: implications for the effects of global warming. Freshwater Biology 59: 20382050.Google Scholar
Jacoby, D.M.P., Casselman, J.M., Crook, V., DeLucia, M., Ahn, H., Kaifu, K., Kurwie, T., Sasal, P., Silfvergrip, A.M.C., Smith, K.G., Uchida, K., Walker, M.M. & Gollock, M.J. (2015). Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Global Ecology and Conservation 4: 321333.Google Scholar
Jacoby, S. (2008). The Age of American Unreason. Pantheon Books, New York.Google Scholar
Jakob, L., Axenov-Gribanov, D.V., Gurkov, A.N., Ginzburg, M., Bedulina, D.S., Timofeyev, M.A., Luckenbach, T., Lucassen, M., Sartoris, F.J., Pörtner, H.O. & Benstead, J. (2016). Lake Baikal amphipods under climate change: thermal constraints and ecological consequences. Ecosphere 7: e01308.Google Scholar
Jansson, R., Backx, H., Boulton, A.J., Dixon, M., Dudgeon, D., Hughes, F., Nakamura, K., Stanley, E. & Tockner, K. (2005). Stating mechanisms and refining criteria for ecologically successful river restoration. Journal of Applied Ecology 42: 218222.Google Scholar
Jaramillo, F. & Destouni, G. (2015). Comment on ‘planetary boundaries: guiding human development on a changing planet’. Science 348: 12171218.Google Scholar
Jeppesen, E., Mehner, T., Winfield, I., Kangur, K., Sarvala, J., Gerdeaux, D., Rask, M., Malmquist, H., Holmgren, K., Volta, P., Romo, S., Eckmann, R., Sandstrom, A., Blanco, S., Kangur, A., Ragnarsson Stabo, H., Tarvainen, M., Ventela, A.M., Sondergaard, M., Lauridsen, T. & Meerhoff, M. (2012). Impacts of climate warming on the longterm dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 139.Google Scholar
Jeppesen, E., Meerhoff, M., Davidson, T.A., Søndergaard, M., Lauridsen, T.L., Beklioğlu, M., Brucet, S., Volta, P., González-Bergonzoni, I. & Nielsen, A. (2014). Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 84107.Google Scholar
Jerde, C.L., Mahon, A.R., Chadderton, W.L. & Lodge, D.M. (2011). ‘Sight-unseen’ detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150157.Google Scholar
Jerde, C.L., Chadderton, W.L., Mahon, A.R., Renshaw, M.A., Corush, J., Budny, M.L., Mysorekar, S. & Lodge, D.M. (2013). Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and Aquatic Sciences 70: 522526.Google Scholar
Jeschke, J.M., Gómez, Aparicio L., Haider, S., Heger, T., Lortie, C.J., Pyšek, P. & Strayer, D.L. (2012). Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14: 120.Google Scholar
Jeziorski, A., Yan, N.D., Paterson, A.M., Desellas, A.M., Turner, M.A., Jeffries, D.S., Keller, B., Weeber, R.C., McNicol, D.K., Palmer, M.E., McIver, K., Arseneau, K., Ginn, B.K., Cumming, B.F. & Smol, J.P. (2008). The widespread threat of calcium decline in fresh waters. Science 32: 13741377.Google Scholar
Jeziorski, A., Tanentzap, A.J., Yan, N.D., Paterson, A.M., Palmer, M.E., Korosi, J.B., Rusak, J.A., Arts, M.T., Keller, W., Ingram, R., Cairns, A. & Smol, J.P. (2015). The jellification of north temperate lakes. Proceedings of the Royal Society B: Biological Sciences 282: 20142449. https://doi.org/10.1098/rspb.2014.2449Google Scholar
Jiang, Z. & Harris, R.B. (2016). Elaphurus davidianus. The IUCN Red List of Threatened Species 2016: e.T7121A22159785. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T7121A22159785.en.Google Scholar
Jiao, L. (2009). Scientists line up against dam that would alter protected wetlands. Science 326: 508509.Google Scholar
Jiguet, F., Godet, L. & Devictor, V. (2012). Hunting and the fate of French breeding waterbirds. Bird Study 59: 474482.Google Scholar
Johnson, P.T., Olden, J.D. & Vander Zanden, M.J. (2008). Dam invaders: impoundments facilitate biological invasions in freshwaters. Frontiers in Ecology and the Environment 6: 357363.Google Scholar
Jones, J.P.G., Rasamy, J.R., Harvey, A., Toon, A., Oidtmann, B., Randrianarison, M.H., Raminosoa, N. & Ravoahangimalala, O.R. (2008). The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biological Invasions 11: 14751482.Google Scholar
Jones, L.A. & Ricciardi, A. (2014). The influence of pre-settlement and early post-settlement processes on the adult distribution and relative dominance of two invasive mussel species. Freshwater Biology 59: 10861100.Google Scholar
Jones, R., Travers, C., Rodgers, C., Lazar, B., English, E., Lipton, J., Vogel, J., Strzepek, K. & Martinich, J. (2013). Climate change impacts on freshwater recreational fishing in the United States. Mitigation & Adaptation Strategies for Global Change 18: 731758.Google Scholar
Jonsson, M., Hedström, P., Stenroth, K., Hotchkiss, E.R., Vasconcelos, F.R., Karlsson, J. & Byström, P. (2015). Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshwater Biology 60: 7888.Google Scholar
Jonsson, T. & Setzer, M. (2015). A freshwater predator hit twice by the effects of warming across trophic levels. Nature Communications 6: 5992. https://doi.org/10.1038/ncomms6992Google Scholar
Juffe‐Bignoli, D., Harrison, I., Butchart, S.H.M., Flitcroft, R., Hermoso, V., Jonas, H., Lukasiewicz, A., Thieme, M., Turak, E., Bingham, H., Dalton, J., Darwall, W., Deguignet, M., Dudley, N., Gardner, R., Higgins, J., Kumar, R., Linke, S., Milton, G.R., Pittock, J., Smith, K.G. & van Soesbergen, A. (2016). Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 133151.Google Scholar
Justus, J., Colyvan, M., Regan, H. & Maguire, L. (2009). Buying into conservation: intrinsic versus instrumental value. Trends in Ecology & Evolution 24: 187191.Google Scholar
Kano, Y., Musikasinthorn, P., Iwata, A., Tun, S., Yun, L., Win, S., Matsui, S., Tabata, R., Yamasaki, T. & Watanabe, K. (2016a). A dataset of fishes in and around Inle Lake, an ancient lake of Myanmar, with DNA barcoding, photo images and CT/3D models. Biodiversity Data Journal 4: e10539. https://doi.org/10.3897/BDJ.4.e10539Google Scholar
Kano, Y., Dudgeon, D., Nam, S., Samejima, H., Watanabe, K., Grudpan, C., Magtoon, W., Musikasinthorn, P., Nguyen, P.T., Praxaysonbath, B., Sato, T., Shibukawa, K., Shimatani, Y., Suvarnaraksha, A., Tanaka, W., Thach, P., Tran, D.D., Yamashita, T. & Utsugi, K. (2016b). Impacts of dams and global warming on fish biodiversity in the Indo-Burma Hotspot. PLoS ONE 11: e0160151. https://doi.org/10.1371/journal.pone.0160151Google Scholar
Karatayev, A.Y., Burlakova, L.E., Padilla, D.K., Mastitsky, S.E & Olenin, S. (2009). Invaders are not a random selection of species. Biological Invasions 11: 20092019.Google Scholar
Karraker, N.E., Gibbs, J.P. & Vonesh, J.R. (2008). Impacts of road deicing on the demography of vernal pool-breeding amphibians. Ecological Applications 18: 724734.Google Scholar
Karraker, N.E., Arrigoni, J. & Dudgeon, D. (2010). Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: species identity matters. Biological Conservation 143: 10791086.Google Scholar
Karraker, N.K. & Dudgeon, D. (2014). Invasive apple snails (Pomacea canaliculata) are predators of amphibians in South China. Biological Invasions 16: 17851789.Google Scholar
Katunzi, E.F.B., Mbonde, A., Waya, R. & Mrosso, H.D.J. (2010). Minor water bodies around Lake Victoria – a replica of lost biodiversity. Aquatic Ecosystem Health and Management 13: 277283.Google Scholar
Kaufman, L. (1992). Catastrophic change in species-rich freshwater ecosystems. BioScience 42: 846858.Google Scholar
Kaushal, S.S., Likens, G.E., Jaworski, N.A., Pace, M.L., Sides, A.M., Seekell, D., Belt, K.T., Secor, D.H. & Wingate, R.L. (2010). Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8: 461466.Google Scholar
Kawarazuka, N. & Béné, C. (2011). The potential role of small fish in improving micronutrient deficiencies in developing countries: building the evidence. Public Health Nutrition 14: 19271938.Google Scholar
Kazembe, J. & Makocho, P. (2004). Oreochromis lidole. The IUCN Red List of Threatened Species 2004: e.T61276A12456642. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T61276A12456642.en.Google Scholar
Kefford, B.J., Buchwalter, D., Cañedo-Argüelles, M., Davis, J.A., Duncan, R.P., Hoffman, A. & Thompson, R.M. (2016). Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biology Letters 12: http://doi: 10.1098/rsbl.2015.1072.Google Scholar
Keith Diagne, L. (2015). Trichechus senegalensis. The IUCN Red List of Threatened Species 2015: e.T22104A97168578. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T22104A81904980.enGoogle Scholar
Kellermann, V., Overgaard, J., Hoffmann, A.A., Fløjgaard, C., Svenning, J.C. & Loeschcke, V. (2012). Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America 109: 1622816233.Google Scholar
Kemp, P.S. (2016). Meta‐analyses, metrics and motivation: mixed messages in the fish passage debate. River Research and Applications 32: 21162124.Google Scholar
Kemp, P.S., Worthington, T.A., Langford, T.E.L., Tree, A.R.J. & Gaywood, M.J. (2011). Qualitative and quantitative effects of reintroduced beavers on stream fish. Fish and Fisheries 13: 158181.Google Scholar
Kennedy, T.A., Muehlbauer, J.D., Yackulic, C.B., Lytle, D.A., Miller, S.W., Dibble, K.L., Kortenhoeven, E.W., Metcalfe, A.N. & Baxter, C.V. (2016). Flow Management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66: 561575.Google Scholar
Khoo, K.H., Leong, T.S., Soon, F.L., Tan, S.P. & Wong, S.Y. (1987). Riverine fishes in Malaysia. Archiv für Hydrobiologie Beiheft, Ergebnisse Limnologie 28: 261268.Google Scholar
Khosov, M. (1963; reprint of 1936 volume). Lake Baikal and its Life. Springer Science and Business Media, Dordrecht.Google Scholar
Kiernan, J.D., Moyle, P.B. & Crain, P.K. (2012). Restoring native fish assemblages to a regulated California stream using the natural flow regime concept. Ecological Applications 22: 14721482.Google Scholar
King, A.J., Ward, K.A., O’Connor, P., Green, D., Tonkin, Z. & Mahoney, J. (2010). Adaptive management of an environmental watering event to enhance native fish spawning and recruitment. Freshwater Biology 55: 1731.Google Scholar
Kilpatrick, A.M., Salkeld, D.J., Titcomb, G. & Hahn, M.B. (2017). Conservation of biodiversity as a strategy for improving human health and well-being. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 2100131. http://doi.org/10.1098/rstb.2016.0131Google Scholar
King, J. & Pienaar, H. (2011). Sustainable use of South Africa’s inland waters: a situation assessment of resource directed measures 12 years after the 1998 National Water Act. Water Research Commission Report TT 491/11, Pretoria.Google Scholar
King, J.M. & Brown, C. (2006). Environmental flows: striking the balance between development and resource protection. Ecology and Society 11 : 26. www.ecologyandsociety.org/vol11/iss2/art26/Google Scholar
King, J.M. & Brown, C. (2010). Integrated basin flow assessments: concepts and method development in Africa and South-east Asia. Freshwater Biology 55: 127146.Google Scholar
Kingsford, R.T. & Thomas, R.F. (2004). Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia. Environmental Management 34: 383396.Google Scholar
Kipp, R.M., Ricciardi, A., Larson, J., Fusaro, A. & Makled, T. (2013). Hemimysis anomala. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=2627Google Scholar
Kipp, R.M., Benson, A.J., Larson, J. & Fusaro, A. (2014). Bithynia tentaculata. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=987Google Scholar
Klecka, G., Persoon, C. & Currie, R. (2010). Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Reviews in Environmental Contamination and Toxicology 207: 193.Google Scholar
Knapp, R.A. (2005). Effects of nonnative fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biological Conservation 121: 265279.Google Scholar
Knapp, R.A. & Sarnelle, O. (2008). Recovery after local extinction: factors affecting re-establishment of alpine lake zooplankton. Ecological Applications 18: 18501859.Google Scholar
Knapp, R.A., Boiano, D.M. & Vredenburg, V.T. (2007). Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa). Biological Conservation 135: 1120.Google Scholar
Knapp, R.A., Fellers, G.M., Kleeman, P.M., Miller, D.A.W., Vredenburg, V.T., Rosenblum, E.B. & Briggs, C.J. (2016). Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America 113: 1188911894.Google Scholar
Knight, A.T. (2013). Reframing the theory of hope in conservation science. Conservation Letters 6: 389390.Google Scholar
Kobanova, G.I., Takhteev, V.V., Rusanovskaya, O.O. & Timofeyev, M.A. (2016). Lake Baikal ecosystem faces the threat of eutrophication. International Journal of Ecology 2016: 6058082. http://dx.doi.org/10.1155/2016/6058082Google Scholar
Koblmüller, S., Duftner, N., Sefc, K.M., Aibara, M., Stipacek, M., Blanc, M., Egger, B. & Sturmbauer, C. (2007). Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization. BMC Evolutionary Biology 7: 7. https://doi.org/10.1186/1471-2148-7-7Google Scholar
Koel, T.M., Mahony, D.L., Kinnan, K.L., Rasmussen, C., Hudson, C.J., Murcia, S. & Kerans, B.L. (2006). Myxobolus cerebralis in native cutthroat trout of the Yellowstone Lake ecosystem. Journal of Aquatic Animal Health 18: 157175.Google Scholar
Koel, T.M., Kerans, B.L., Barras, S.C., Hanson, K.C. & Wood, J.S. (2010). Avian piscivores as vectors for Myxobolus cerebralis in the Greater Yellowstone ecosystem. Transactions of the American Fisheries Society 139: 976988.Google Scholar
Kolby, J.E. (2014). Ecology: stop Madagascar’s toad invasion now. Nature 509: 563.Google Scholar
Koldewey, H., Cliffe, A. & Zimmerman, B. (2013). Breeding programme priorities and management techniques for native and exotic freshwater fishes in Europe. International Zoo Yearbook 47: 93101.Google Scholar
Kornis, M.S., Carlson, J., Lehrer-Brey, G. & Vander-Zanden, J. (2014). Experimental evidence that the ecological effects of an invasive fish are reduced at high densities. Oecologia 175: 325334.Google Scholar
Kornis, M.S., Weidel, B.C. & Vander-Zanden, M.J. (2017). Divergent life histories of invasive round gobies (Neogobius melastomus) in Lake Michigan and its tributaries. Ecology of Freshwater Fish 26: 563574.Google Scholar
Kosten, S., Huszar, V.L.M., Bécares, E., Costa, L.S., van Donk, E., Hansson, L.-A., Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester, L., Moss, B., Lürling, M., Nõges, T., Romo, S. & Scheffer, M. (2012). Warmer climate boosts cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118126.Google Scholar
Kostianoy, A.G. & Kosarev, A.N. (2009). The Aral Sea Environment. Springer-Verlag, Berlin.Google Scholar
Kostoski, G., Albrecht, C., Trajanovski, S. & Wilke, T. (2010). A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid. Biogeosciences 7: 39994015. http://doi.org/10.5194/bg-7-3999-2010Google Scholar
Kottelat, M. & Chu, X. (1988). Revision of Yunnanilus with descriptions of a miniature species flock and six new species from China (Cypriniformes: Homalopteridae). Environmental Biology of Fishes 23: 6593.Google Scholar
Kovach, R.P., Gharrett, A.J. & Tallmon, D.A. (2012). Genetic change for earlier migration timing in a pink salmon population. Proceedings of the Royal Society B: Biological Sciences 279: 38703878.Google Scholar
Kreps, T.A., Baldridge, A.K. & Lodge, D.M. (2012). The impact of an invasive predator (Orconectes rusticus) on freshwater snail communities: insights on habitat-specific effects from a multilake long-term study. Canadian Journal of Fisheries and Aquatic Sciences 69: 11641173.Google Scholar
Kreuzberg-Mukhina, E.A. (2006). The Aral Sea basin: changes in migratory and breeding waterbird populations due to major human-induced changes to the region’s hydrology. In Waterbirds around the World (Boere, G.C., Galbraith, C.A. & Stroud, D.A., eds), The Stationery Office, Edinburgh: pp. 283284.Google Scholar
Kristensen, T.K. & Stensgaard, A-S. (2010). Gabbiella tchadiensis. The IUCN Red List of Threatened Species 2010: e.T165387A6011471. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T165387A6011471.enGoogle Scholar
Kristofco, L.A. & Brooks, B.W. (2017). Global scanning of antihistamines in the environment: analysis of occurrence and hazards in aquatic systems. Science of the Total Environment 592: 477487.Google Scholar
Kuehne, L.M., Olden, J.D. & Duda, J.J. (2012). Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world. Canadian Journal of Fisheries and Aquatic Sciences 69: 16211630.Google Scholar
Kuemmerlen, M., Schmalz, B., Cai, Q., Haase, P., Fohrer, N. & Jähnig, S.C. (2015). An attack on two fronts: predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshwater Biology 60: 14431458.Google Scholar
Kummu, M. & Sarkkula, J. (2008). Impact of the Mekong River flow alteration on the Tonle Sap flood pulse. Ambio 37: 185192.Google Scholar
Kummu, M., Penny, D., Sarkkula, J. & Koponen, J. (2008). Sediment: curse or blessing for Tonle Sap Lake? Ambio 37: 158163.Google Scholar
Kummu, M., Lu, X. X., Wang, J.J. & Varis, O. (2010). Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119: 181197.Google Scholar
Kuparinen, A., Boit, A., Valdovinos, F.S., Lassaux, H. & Martinez, N.D. (2016). Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific Reports 6: 22245. http://doi.org/10.1038/srep22245Google Scholar
Kwong, K.L., Chan, R.Y.K. & Qiu, J.-W. (2009). The potential of the invasive snail Pomacea canaliculata as a predator of various life-stages of five species of freshwater snails. Malacologia 51: 343356.Google Scholar
Kwong, K.L., Dudgeon, D., Wong, P.K. & Qiu, J.-W. (2010). Secondary production and diet of an invasive snail in freshwater wetlands: implications for resource utilization and competition. Biological Invasions 12: 11531164.Google Scholar
Lai, G., Wang, P. & Li, L. (2016). Possible impacts of the Poyang Lake (China) hydraulic project on lake hydrology and hydrodynamics. Hydrology Research 47: 187205.Google Scholar
Lai, X., Huang, Q., Zhang, Y. & Jiang, J. (2014). Impact of lake inflow and the Yangtze River flow alterations on water levels in Poyang Lake, China. Lake and Reservoir Management 30: 321330.Google Scholar
Lake, P.S., Bond, N. & Reich, P. (2007). Linking ecological theory with stream restoration. Freshwater Biology 52: 597615.Google Scholar
Lake, P.S., Bond, N.R. & Reich, P. (2007). Linking ecological theory with stream restoration. Freshwater Biology 52: 597615.Google Scholar
Lakra, W.S., Sarkar, U.K., Dubey, V.K., Sani, R. & Pandey, A. (2011). River inter linking in India: status, issues, prospects and implications on aquatic ecosystems and freshwater fish diversity. Reviews in Fish Biology and Fisheries 21: 463479.Google Scholar
Lamer, J.T., Dolan, C.R., Petersen, J.L., Chick, J.H. & Epifanio, J.M. (2010). Introgressive hybridization between bighead carp and silver carp in the Mississippi and Illinois Rivers. North American Journal of Fisheries Management 30: 14521461.Google Scholar
Lamouroux, N., Gore, J.A., Lepori, F. & Statzner, B. (2015). The ecological restoration of large rivers needs science-based, predictive tools meeting public expectations: an overview of the Rhône project. Freshwater Biology 60: 10691084.Google Scholar
Landigran, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N., Baldé, A.B., Bertollini, R., Bose-O’Reilly, S., Boufford, J.I., Breysse, P.N., Chiles, T., Mahidol, C., Coll-Seck, A.M., Cropper, M.L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.V., McTeer, M.A., Murray, C.J.L., Ndahimananjara, J.D., Perera, F., Potočnik, J., Preker, A.S., Ramesh, J., Rockström, J., Salinas, C., Samson, L.D., Sandilya, K., Sly, P.D., Smith, K.R., Steiner, A., Stewart, R.B., Suk, W.A., van Schayck, O.C.P., Yadama, G.N., Yumkella, K. & Zhong, M. (2017). The Lancet Commission on pollution and health. The Lancet 391: 462512.Google Scholar
Laramie, M.B., Pilliod, D.S. & Goldberg, C.S. (2015). Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation 183: 2937.Google Scholar
Larigauderie, A. & Mooney, H.A. (2010). The Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services: moving a step closer to an IPCC-like mechanism for biodiversity. Current Opinion in Environmental Sustainability 2: 914.Google Scholar
Larsen, S., Muehlbauer, J.D. & Marti, E. (2016). Resource subsidies between stream and terrestrial ecosystems under global change. Global Change Biology 22: 24892504.Google Scholar
Lassettre, N.S. & Kondolf, G.M. (2012). Large woody debris in urban stream channels: redefining the problem. River Research and Applications 28: 14771487.Google Scholar
Latrubesse, E.M., Arima, E.Y., Dunne, T., Park, E., Baker, V.R., d’Horta, F.M., Wight, C., Wittmann, F., Zuanon, J., Baker, P.A., Ribas, C.C, Norgaard, R.B., Filizola, N., Ansar, A., Flyvbjerg, B. & Stevaux, J.C. (2017). Damming the rivers of the Amazon basin. Nature 546: 363369.Google Scholar
Law, A., Jones, K.C. & Willby, N.J. (2014). Medium vs. short-term effects of herbivory by Eurasian beaver on aquatic vegetation. Aquatic Botany 116: 2734.Google Scholar
Law, A., McLean, F. & Willby, N.J. (2016). Habitat engineering by beaver benefits aquatic biodiversity and ecosystem processes in agricultural streams. Freshwater Biology 61: 486499.Google Scholar
Lawler, J.J., Shafer, S.L., Bancroft, B.A. & Blaustein, A.R. (2010). Projected climate impacts for the amphibians of the Western Hemisphere. Conservation Biology 24: 3850.Google Scholar
Lawrence, D.J., Stewart-Koster, B., Olden, J.D., Ruesch, A.S., Torgersen, C.E., Lawler, J.J., Butcher, D.P. & Crown, J.K. (2014). The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon. Ecological Applications 24: 895912.Google Scholar
Ledger, M.E. & Milner, A.M. (2015). Extreme events in fresh water. Freshwater Biology 60: 16.Google Scholar
Leigh, C., Boulton, A.J., Courtwright, J.L., Fritz, K., May, C.L., Walker, R.H. & Datry, T. (2016). Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology 61: 11811199.Google Scholar
Lele, S., Springate-Baginski, O., Lakerveld, R., Deb, D. & Dash, P. (2013). Ecosystem services: origins, contributions, pitfalls and alternatives. Conservation and Society 11: 343358.Google Scholar
Lehner, B. & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes 27: 21712186. (Data available at www.hydrosheds.org or www.hydrosheds.org/page/hydrobasins.)Google Scholar
Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf, N. & Wisser, D. (2011). High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494502.Google Scholar
Lenoir, J. & Svenning, J.C. (2015). Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38: 1528.Google Scholar
Leonard, P.B., Baldwin, R.F. & Hanks, R.D. (2017). Landscape-scale conservation design across biotic realms: sequential integration of aquatic and terrestrial landscapes. Scientific Reports 7: 14556. https://doi.org/10.1038/s41598–017-15304-w.Google Scholar
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T. & Brosse, S. (2008). Fish invasion in the world’s river systems: when natural processes are blurred by human activity. PLoS Biol 6: e28. https://doi.org/10.1371/journal.pbio.0060028Google Scholar
Leprieur, F., Brosse, S., García-Berthou, E., Oberdorff, T., Olden, J.D. & Townsend, C.R. (2009). Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish and Fisheries 10: 8897.Google Scholar
Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Dürr, H.H., Brosse, S. & Oberdorff, T. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14: 325334.Google Scholar
Leung, B., Lodge, D.M., Finnoff, D., Shogren, J.F., Lewis, M.A. & Lamberti, G. (2002). An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London, Series B: Biological Sciences 269: 24072413.Google Scholar
Leung, K.M.Y. & Dudgeon, D. (2008). Ecological risk assessment and management of exotic organisms associated with aquaculture activities. In Understanding and Applying Risk Analysis in Aquaculture (Bondad-Reantaso, M.G., Arthur, J.R. & Subasinghe, R.P., eds), FAO Fisheries Technical Paper No. 519, FAO, Rome: pp. 67–100.Google Scholar
Leuven, R.S.E.W., van der Velde, G., Baijens, I., Snijders, J., van der Zwart, C., Lenders, H.J.R., bij de Vaate, A. (2009). The river Rhine: a global highway for dispersal of aquatic invasive species. Biological Invasions 11: 19892008.Google Scholar
Li, C., Corrigan, S., Yang, L., Straube, N., Harris, M., Hofreiter, M., White, W.T. & Naylor, G.J.P. (2015). DNA capture reveals transoceanic gene flow in endangered river sharks. Proceedings of the National Academy of Sciences of the United States of America 112: 1330213307.Google Scholar
Li, Y., Cohen, J.M. & Rohr, J.R. (2013). Review and synthesis of the effects of climate change on amphibians. Integrative Zoology 8: 145161.Google Scholar
Limburg, K.E. & Waldman, J.B. (2009). Dramatic declines in North Atlantic diadromous fishes. BioScience 59: 955965.Google Scholar
Lindner, K., Cerwenka, A.F., Brandner, J., Gertzen, S., Borcherding, J. & Schliewen, U.K. (2013). First evidence for interspecific hybridization between invasive goby species Neogobius fluviatilis and Neogobius melanostomus (Teleostei: Gobiidae: Benthophilinae). Journal of Fish Biology 82: 21282134.Google Scholar
Linke, S., Turak, E. & Nel, J. (2011). Freshwater conservation planning: the case for systematic approaches. Freshwater Biology 56: 620.Google Scholar
Lips, K.R., Brem, F., Brenes, R., Reeve, J.D., Alford, R.A.,Voyles, J., Carey, C., Livo, L., Pessier, A.P. & Collins, J.P. (2006). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103: 31653170.Google Scholar
Lira-Noriega, A., Aguilar, V., Alarcón, J., Kolb, M., Urquiza-Haas, T., González-Ramírez, L., Tobón, W. & Koleff, P. (2015). Conservation planning for freshwater ecosystems in Mexico. Biological Conservation 191: 357366.Google Scholar
Litchman, E. (2010). Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters 13: 15601572.Google Scholar
Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., Cousens, S., Mathers, C. & Black, R.E. (2015). Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. The Lancet 385: 430440.Google Scholar
Liu, X., Cao, Y., Xue, T., Wu, R., Zhou, Y., Zhou, C., Zanatta, D.T., Ouyang, S. & Wu, X. (2017). Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage. PLoS ONE 12: e0189737. https://doi.org/10.1371/journal.pone.0189737Google Scholar
Lodge, D.M. (2010). It’s the water, stupid. BioScience 60: 67.Google Scholar
Lodge, D.M., Rosenthal, S.K., Mavuti, K.M., Muohi, W., Ochieng, P., Stevens, S.S., Mungai, B.N. & Mkoji, G.M. (2005). Louisiana crayfish (Procambarus clarkii) (Crustacea: Cambaridae) in Kenyan ponds: non-target effects of a potential biological control agent for schistosomiasis. African Journal of Aquatic Science 30: 119124.Google Scholar
Loehle, C. & Eschenbach, W. (2012). Historical bird and terrestrial mammal extinction rates and causes. Diversity and Distributions 18: 8491.Google Scholar
Lopes-Lima, M., Sousa, R., Geist, J., Aldridge, D.C., Araujo, R., Bergengren, J., Bespalaya, Y., Bódis, E., Burlakova, L., Van Damme, D., Douda, K., Froufe, E., Georgiev, D., Gumpinger, C., Karatayev, A., Kebapçi, Ü., Killeen, I., Lajtner, J., Larsen, B.M., Lauceri, R., Legakis, A., Lois, S., Lundberg, S., Moorkens, E., Motte, G., Nagel, K.-O., Ondina, P., Outeiro, A., Paunovic, M., Prié, V., von Proschwitz, T., Riccardi, N., Rudzīte, M., Rudzītis, M., Scheder, C., Seddon, M., Şereflişan, H., Simić, V., Sokolova, S., Stoeckl, K., Taskinen, J., Teixeira, A., Thielen, F., Trichkova, T., Varandas, S., Vicentini, H., Zajac, K., Zajac, T. & Zogaris, S. (2017). Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biological Reviews 92: 572607.Google Scholar
López-Luna, M.A., Hidalgo-Mihart, M.G., Aguirre-León, G., González-Ramón, M.C. & Rangel-Mendoza, J.A. (2015). Effect of nesting environment on incubation temperature and hatching success of Morelet’s crocodile (Crocodylus moreletii) in an urban lake of Southeastern Mexico. Journal of Thermal Biology 49: 6673.Google Scholar
Lorion, C.M. & Kennedy, B.P. (2009a). Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in Neotropical headwater streams. Freshwater Biology 54: 165180.Google Scholar
Lorion, C.M. & Kennedy, B.P. (2009b). Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecological Applications 19: 468479.Google Scholar
Lowe, W.H. (2012). Climate change is linked to long-term decline in a stream salamander. Biological Conservation 145: 4853.Google Scholar
Lowe-McConnell, R.H. (1993). Fish faunas of the African Great Lakes: origins, diversity, and vulnerability. Conservation Biology 7: 634643.Google Scholar
Lucentini, L., Puletti, M.E., Ricciolini, C., Gigliarelli, L., Fontaneto, D., Lanfaloni, L., Bilò, F., Natali, M. & Panara, F. (2011). Molecular and phenotypic evidence of a new species of genus Esox (Esocidae, Esociformes, Actinopterygii): the southern pike, Esox flaviae. PLoS ONE 6: e25218. https://doi.org/10.1371/journal.pone.0025218Google Scholar
Lucifora, L.O., Balboni, L., Scarabotti, P.A., Alonso, F.A., Sabadin, D.E., Solari, A., Vargas, F., Barbini, S.A., Mabragaña, E. & Díaz de Astarloa, J.M. (2017). Decline or stability of obligate freshwater elasmobranchs following high fishing pressure. Biological Conservation 210: 293298.Google Scholar
Luiza-Andrade, A., Brasil, L.S., Benone, N.L., Shimano, Y., Justino Farias, A.P., Montag, L.F., Dolédec, S. & Juen, L. (2017). Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators 82: 478483.Google Scholar
Lukács, B.A., Vojtkó, A.E., Mesterházy, A., Molnár, V.A., Süveges, K., Végvári, Z., Brusa, G. & Cerabolini, B.E.L. (2017). Growth-form and spatiality driving the functional difference of native and alien aquatic plants in Europe. Ecology and Evolution 7: 950963.Google Scholar
Luke, S.H., Dow, R.A., Butler, S., Vun Khen, C., Aldridge, D.C., Foster, W.A. & Turner, E.C. (2017). The impacts of habitat disturbance on adult and larval dragonflies (Odonata) in rainforest streams in Sabah, Malaysian Borneo. Freshwater Biology 62: 491506.Google Scholar
Lukhaup, C. (2015). Cherax (Astaconephrops) pulcher, a new species of freshwater crayfish (Crustacea, Decapoda, Parastacidae) from the Kepala Burung (Vogelkop) Peninsula, Irian Jaya (West Papua), Indonesia. Zookeys 502: 110.Google Scholar
Lundberg, G., Kottelat, M., Smith, G.R., Stiassny, M.L.J. & Gill, A.C. (2000). So many fishes, so little time: an overview of recent ichthyological discovery in continental waters. Annals of the Missouri Botanical Gardens 87: 2662.Google Scholar
Lürling, M., Eshetu, F., Faassen, E.J., Kosten, S. & Huszar, V.L.M. (2013). Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58: 552559.Google Scholar
Lydeard, C., Cowie, R.H., Ponder, W.F., Bogan, A.E., Bouchet, P., Clark, S.A., Cummings, K.S., Frest, T.J., Gargominy, O., Herbert, D.J., Hershler, R., Perez, K.E., Roth, B., Seddon, M., Strong, E.E. & Thompson, F.E. (2004). The global decline of nonmarine mollusks. BioScience 54: 321330.Google Scholar
Lymas, M. (2011). The God Species. Fourth Estate, London.Google Scholar
Lytle, D.A. & Poff, N.L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94100.Google Scholar
Mccallum, M.L. & Bury, G.W. (2013). Google search patterns suggest declining interest in the environment. Biodiversity and Conservation 22: 13551367.Google Scholar
MacDonald, R.J., Boon, S., Byrne, J.M., Robinson, M.D. & Rasmussen, J.B. (2014). Potential future climate effects on mountain hydrology, stream temperature, and native salmonid life history. Canadian Journal of Fisheries and Aquatic Sciences 71: 189202.Google Scholar
Mace, G.M., Cramer, W., Diaz, S., Faith, D.P., Larigauderie, A., Le Prestre, P., Palmer, M., Perrings, C., Scholes, R.J., Walpole, M., Walther, B.A., Watson, J.E.M. & Mooney, H.A. (2010). Biodiversity targets after 2010. Current Opinion in Environmental Sustainability 2: 38.Google Scholar
Mace, G.M., Norris, K. & Fitter, A.H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology & Evolution 27: 1926.Google Scholar
MacKinnon, J., Verkuil, Y.I. & Murray, N. (2012). IUCN Situation Analysis on East and Southeast Asian Intertidal Habitats, with Particular Reference to the Yellow Sea (including the Bohai Sea). Occasional Paper of the IUCN Species Survival Commission No. 47, IUCN, Gland and Cambridge.Google Scholar
MacNab, V. & Barber, I. (2012). Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biology 18 : 15401548.Google Scholar
Madsen, J., Christensen, T.K., Balsby, T.J.S., Tombre, I.M. (2015). Could have gone wrong: effects of abrupt changes in migratory behaviour on harvest in a waterbird population. PLoS ONE 10: e0135100. https://doi.org/10.1371/journal.pone.0135100Google Scholar
Mandrak, N.E & Cudmore, B. (2010). The fall of native fishes and the rise of non-native fishes in the Great Lakes Basin. Aquatic Ecosystem Health and Management 13: 255268.Google Scholar
Mantua, N., Tohver, I. & Hamlet, A. (2010). Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climatic Change 102: 187223.Google Scholar
Mantyka-Pringle, C.S., Martin, T.G., Moffatt, D.B., Linke, S. & Rhodes, J.R. (2014). Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology 51: 527581.Google Scholar
Markovic, D., Carrizo, S., Freyhof, J., Cid, N., Lengyel, S., Scholz, M., Kasperdius, H., Darwall, W. (2014). Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Diversity and Distributions 20: 10971107.Google Scholar
Martel, A., Blooi, M., Adriaensen, C., Van Rooij, P., Beukema, W., Fisher, M.C., Farrer, R.A., Schmidt, B.R., Tobler, U., Goka, K., Lips, K.R., Muletz, C., Zamudio, K.R., Bosch, J., Lötters, S., Wombwell, E., Garner, T.W.J., Cunningham, A.A., Spitzen-van der Sluijs, A., Salvidio, S., Ducatelle, R., Nishikawa, K., Nguyen, T.T., Kolby, J.E., Van Bocxlaer, I., Bossuyt, F. & Pasmans, F. (2014). Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346: 630631.Google Scholar
Martin, P., Dorn, N.J., Kawai, T., van der Heiden, C. & Scholtz, G. (2010). The enigmatic marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contributions to Zoology 79: 107111.Google Scholar
Martin, R.A. (2005). Conservation of freshwater and euryhaline elasmobranchs: a review. Journal of the Marine Biological Association of the United Kingdom 85: 10491073.Google Scholar
Martin Österling, E. & Söderberg, H. (2015). Sea-trout habitat fragmentation affects threatened freshwater pearl mussel. Biological Conservation 186: 197203.Google Scholar
Matsusaki, S.S. & Kadoya, T. (2015). Trends and stability of inland fishery resources in Japanese lakes: introduction of exotic piscivores as a driver. Ecological Applications 25: 14201432.Google Scholar
Matthews, J.H., Wickel, B.A.J. & Freeman, S. (2011). Converging currents in climate-relevant conservation: water, infrastructure, and institutions. PLoS Biol 9: e1001159. https://doi.org/10.1371/journal.pbio.1001159Google Scholar
Matthews, T.G., Lester, R.E., Cummings, C.R. & Lautenschlager, A.D. (2015). Limitations to the feasibility of using hypolimnetic releases to create refuges for riverine species in response to stream warming. Environmental Science & Policy 54: 331339.Google Scholar
Matthews, W.J. & Marsh-Matthews, E. (2007). Extirpation of red shiners in direct tributaries of Lake Texoma (Oklahoma-Texas): a cautionary case history from a fragmented river-reservoir system. Transactions of the American Fisheries Society 136: 10411062.Google Scholar
McCaffery, R.M. & Maxell, B. A. (2010). Decreased winter severity increases viability of a montane frog population. Proceedings of the National Academy of Sciences of the United States of America 107: 86448649.Google Scholar
McCarthy, D.P., Donald, P.F., Scharlemann, J.P., Buchanan, G.M., Balmford, A., Green, J.M., Bennun, L.A., Burgess, N.D., Fishpool, L.D., Garnett, S.T., Leonard, D.L., Maloney, R.F., Morling, P., Schaefer, H.M., Symes, A., Wiedenfeld, D.A. & Butchart, S.H. (2012). Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338: 946949.Google Scholar
McCarthy, M. (2015). The Moth Snowstorm. John Murray, London.Google Scholar
McCully, P. (2001). Silenced Rivers: The Ecology and Politics of Large Dams (Enlarged and Updated Edition). Zed Books, London and York.Google Scholar
McDonald, D.B., Parchman, T.L., Bower, M.R., Hubert, W.A. & Rahel, F.J. (2008). An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species. Proceedings of the National Academy of Sciences 105: 1083710842.Google Scholar
McDonnell, T.C., Sloat, M.R., Sullivan, T.J., Dolloff, C.A., Hessburg, P.F., Povak, N.A., Jackson, W.A. & Sams, C. (2015). Downstream warming and headwater acidity may diminish coldwater habitat in southern Appalachian mountain streams. PLoS ONE 10: e0134757. https://doi.org/10.1371/journal.pone.0134757Google Scholar
McDowall, R.M. (2006). Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Reviews in Fish Biology and Fisheries 16: 233422.Google Scholar
McIntosh, A., McHugh, P. & Budy, P. (2012). Salmo trutta L. A Handbook of Global Freshwater Invasive Species (Francis, R.A., ed.), Earthscan, Oxford: pp. 285296.Google Scholar
McIntyre, P.B., Jones, L.E., Flecker, A.S. & Vanni, M.J. (2007). Fish extinctions alter nutrient recycling in tropical freshwaters. Proceedings of the National Academy of Sciences of the United States of America 104: 44614466.Google Scholar
McIntyre, P.B., Reidy Liermann, C.A. & Revenga, C. (2016). Linking freshwater fishery management to global food security and biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America 113: 1288012885.Google Scholar
McKinstry, M.C., Caffrey, P. & Anderson, S.H. (2001). The importance of beaver to wetland habitats and waterfowl in Wyoming. Journal of the American Water Resources Association 37: 15711577.Google Scholar
McKaye, K.R., Ryan, J.D., Stauffer, J.R., Lopez Perez, L.J., Vega, G.L. & van den Berghe, E.P. (1995). African tilapia in Lake Nicaragua. BioScience 45: 406411.Google Scholar
McShane, T.O., Hirsch, P.D., Tran Chi, T., Songorwa, A.N., Kinzig, A., Monteferri, B., Mutekanga, D., Hoang Van, T., Dammert, J.L., Pulgar-Vidal, M., Welch-Devine, M., Brosius, J.P., Coppolillo, P., O’Connor, S. (2011). Hard choices: making tradeoffs between biodiversity conservation and human well-being. Biological Conservation 144: 966972.Google Scholar
Meerhoff, M., Teixeira-de Mello, F., Kruk, C., Alonso, C., González-Bergonzoni, I., Pacheco, J.P., Lacerot, G., Arim, M., Beklioğlu, M., Brucet, S., Goyenola, G., Iglesias, C., Mazzeo, N. & Kosten, S. (2012). Environmental warming in shallow lakes: a review of effects on community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259350.Google Scholar
Mehner, T., Benndorf, J., Kasprzak, P. & Koschel, R. (2002). Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology 47: 24532465.Google Scholar
Mei, Z., Huang, S., Hao, Y., Turvey, S., Gong, W. & Wang, D. (2012). Accelerating population decline of Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis. Biological Conservation 153: 192200.Google Scholar
Mei, Z., Zhang, X., Huang, S.L., Zhao, X., Hao, Y., Zhang, L., Qian, Z., Zheng, J., Wang, K. & Wang, D. (2014). The Yangtze finless porpoise: on an accelerating path to extinction? Biological Conservation 172: 117123.Google Scholar
Meis, S., Thackeray, S.J. & Jones, I.D. (2009). Effects of recent climate change on phytoplankton phenology in a temperate lake. Freshwater Biology 54: 18881898.Google Scholar
Melero, Y., Palazón, S. & Lambin, X. (2014). Invasive crayfish reduce food limitation of alien American mink and increase their resilience to control. Oecologia 174: 427434.Google Scholar
Melis, T.S., Korman, J. & Kennedy, T.A. (2012). Abiotic and biotic responses of the Colorado River to controlled floods at Glen Canyon Dam, Arizona, USA. River Research and Applications 28: 764776.Google Scholar
Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society B: Biological Sciences 358: 19351955.Google Scholar
Meyer, B.S., Matchiner, M. & Salzburger, W. (2013). A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Molecular Phylogenetics and Evolution 83: 5671.Google Scholar
Micklin, P.P, Aladin, N.V. & Plotnikov, I. (2014). The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake. Springer-Verlag, Berlin.Google Scholar
Miettinen, J., Shi, C. & Liew, S.C. (2012). Two decades of destruction in Southeast Asia’s peat swamp forests. Frontiers in Ecology and the Environment 10: 124128.Google Scholar
Miettinen, J., Shi, C. & Liew, S.C. (2016). Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6: 6778.Google Scholar
Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S.C. & Page, S.E. (2017). From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12: 024014.Google Scholar
Millennium Ecosystems Assessment (MEA) (2005). Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington, DC.Google Scholar
Miller, G. (2010). In Central California, coho salmon are on the brink. Science 327: 512513.Google Scholar
Mills, E.L., Strayer, D.L., Scheuerell, M.D. & Carlton, J.T. (1996). Exotic species in the Hudson River Basin: a history of invasions and introductions. Estuaries 19: 814823.Google Scholar
Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P. & Stouffer, R. (2008). Stationarity is dead: whither water management? Science 319: 573574.Google Scholar
Minckley, W.L. (1995). Translocation as a tool for conserving imperiled fishes: experiences in the western US. Biological Conservation 72 : 297309.Google Scholar
Mkumbo, O.C. & Marshall, B.E. (2015). The Nile perch fishery of Lake Victoria: current status and management challenges. Fisheries Management and Ecology 22: 5663.Google Scholar
Moe, S.J., De Schamphelaere, K., Clements, W.H., Sorensen, M.T., Van den Brink, P.J. & Liess, M. (2013). Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry 32: 4961.Google Scholar
Moilanen, A., Letherwick, J. & Edith, J. (2008). A method for spatial freshwater conservation prioritization. Freshwater Biology 53: 577592.Google Scholar
Montgomery, D.R. (2003). King of Fish: The Thousand-Year Run of Salmon. Westview Press, Cambridge, MA.Google Scholar
Moore, M.V., Hampton, S.E., Izmest’eva, L., Silow, E.A., Peshkova, E.V. & Pavlov, B.K. (2009). Climate change and the world’s ‘Sacred Sea’ – Lake Baikal, Siberia. BioScience 59: 405417.Google Scholar
Moorkens, E.A. & Killeen, I.J. (2014). Assessing near-bed velocity in a recruiting population of the endangered freshwater pearl mussel (Margaritifera margaritifera) in Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 853862.Google Scholar
Morgan, I., McDonald, D.G. & Wood, C.M. (2001). The cost of living for freshwater fish in a warmer, more polluted world. Global Change Biology 7: 345355.Google Scholar
Morton, B. (1975). The colonization of Hong Kong’s raw water supply system by Limnoperna fortunei (Dunker) (Bivalvia: Mytilacea) from China. Malacological Review 8: 91105.Google Scholar
Moss, B. (2010). Climate change, nutrient pollution and the bargain of Dr Faustus. Freshwater Biology 55 (Suppl. 1): 175187.Google Scholar
Moss, B., Kosten, S., Meerhof, M., Battarbee, R., Jeppesen, E., Mazzeo, N., Havens, K., Lacerot, G., Liu, Z. & De Meester, L. (2011). Allied attack: climate change and eutrophication. Inland Waters 1: 101105.Google Scholar
Moyle, P.B., Li, H.W. & Barton, B.A. (1986). The Frankenstein effect: impact of introduced fishes on native fishes in North America. In Fish Culture in Fisheries Management (Stroud, R.H., ed.), American Fisheries Society, Bethesda, MD: pp. 415426.Google Scholar
MRC (2002). Annual Report 2001. Meong River Commission, Phnom Penh.Google Scholar
MRC (2017). The Council Study. Key Messages from the Study on Sustainable Management and Development of the Mekong River Basin, including Impact of Mainstream Hydropower Projects. Mekong River Commission, Vientiane. mrcmekong.org/assets/Publications/Council-Study/Council-study-Reports-discipline/CS-Key-Messages-long-v9.pdfGoogle Scholar
MRCS (2011a). Proposed Xayaburi Dam Project – Mekong River. Prior Consultation Project Review Report. Mekong River Commission Secretariat, Vientiane. mrcmekong.org/assets/Publications/Reports/PC-Proj-Review-Report-Xaiyaburi-24-3-11.pdfGoogle Scholar
MRCS (2011b). Mekong River Commission Strategic Plan 2011–2015. Mekong River Commission Secretariat, Vientiane. www.mrcmekong.org/assets/Publications/strategies-workprog/Stratigic-Plan-2011-2015-council-approved25012011-final-.pdfGoogle Scholar
Mugue, N. (2010). Pseudoscaphirhynchus kaufmanni. The IUCN Red List of Threatened Species 2010: e.T18601A8498207. http://dx.doi.org/10.2305/IUCN.UK.2010-1.RLTS.T18601A8498207.enGoogle Scholar
Muhlfeld, C.C., Kalinowski, S.T., McMahon, T.E., Taper, M.L., Painter, S., Leary, R.F. & Allendorf, F.W. (2009). Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters 5: 328331.Google Scholar
Müller, W.E.G., Belikov, S.I., Kaluzhnaya, O.V., Perović-Ottstadt, S., Fattorusso, E., Ushijima, H., Krasko, A. & Schröder, H.C. (2007). Cold stress defense in the freshwater sponge Lubomirskia baicalensis. FEBS Journal 274: 2336.Google Scholar
Munsch, S.H., Cordell, J.R. & Toft, J.D. (2017). Effects of shoreline armouring and overwater structures on coastal and estuarine fish: opportunities for habitat improvement. Journal of Applied Ecology 54: 13731384.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Naeem, S. & Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature 390: 507509.Google Scholar
Nahlik, A.M. & Fennessy, M.S. (2016). Carbon storage in US wetlands. Nature Communications 7: 13835. https://doi.org/10.1038/ncomms13835Google Scholar
Naiman, R.J. & Dudgeon, D. (2011). Global alteration of freshwaters and influences on human and environmental well-being. Ecological Research 26: 865873.Google Scholar
Naiman, R.J., Johnston, C.A. & Lelley, J.C. (1988). Alteration of North American streams by beaver. BioScience 38: 753762.Google Scholar
Naithani, J., Plisnier, P. & Deleersnijder, E. (2011). Possible effects of global climate change on the ecosystem of Lake Tanganyika. Hydrobiologia 671: 147163.Google Scholar
Nakano, D. & Strayer, D.L. (2014). Biofouling animals in fresh water: biology, impacts, and ecosystem engineering. Frontiers in Ecology and Environment 12: 167175.Google Scholar
Nalepa, T.F., Fanslow, D.L. & Lang, G.A. (2009). Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis. Freshwater Biology 54: 466479.Google Scholar
NatureServe (2013). Thaleichthys pacificus. The IUCN Red List of Threatened Species 2013: e.T202415A18236183. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T202415A18236183.enGoogle Scholar
Naylor, R.M. (1996). Invasions in agriculture: assessing the cost of the golden apple snail in Asia. Ambio 25: 443448.Google Scholar
Nel, J.L., Reyers, B., Roux, D.J. & Cowling, R.M. (2009). Expanding protected areas beyond their terrestrial comfort zone: identifying spatial options for river conservation. Biological Conservation 142: 16051616.Google Scholar
Neuwald, J.L. & Valenzuela, N. (2011). The lesser known challenge of climate change: thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLoS One 6: e18117. https://doi.org/10.1371/journal.pone.0018117Google Scholar
Nico, L. & Fuller, P. (2014a). Hypophthalmichthys molitrix. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=549Google Scholar
Nico, L. & Fuller, P. (2014b). Hypophthalmichthys nobilis. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=551Google Scholar
Nico, L.G. & Neilson, M.E. (2014). Mylopharyngodon piceus. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=573Google Scholar
Nico, L., Maynard, E., Schofield, P.J., Cannister, M., Larson, J., Fusaro, A. & Neilson, M. (2014a). Cyprinus carpio. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=4Google Scholar
Nico, L.G., Fuller, P.L., Schofield, P.J. & Neilson, M.E. (2014b). Ctenopharyngodon idella. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=514Google Scholar
Nico, L.G., Schofield, P.J. & Neilson, M. (2014c). Oreochromis niloticus. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=468Google Scholar
Nilsson, C., Reidy, C.A., Dynesius, M. & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science 308: 405408.Google Scholar
Nilsson, C., Brown, R.L., Jansson, R. & Merritt, D.M. (2010). The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews 85: 837858.Google Scholar
Ng, P.K.L., Tay, J.B. & Lim, K.K.P. (1994). Diversity and conservation of blackwater fishes in Peninsular Malaysia, particularly in the North Selangor peat swamp forest. Hydrobiologia 285: 203218.Google Scholar
Ng, T.H., Tan, S.K., Wong, W.H., Meier, R., Chan, S.-Y., Tan, H.H. & Yeo, D.C.G. (2016). Molluscs for sale: assessment of freshwater gastropods and bivalves in the ornamental pet trade. PLoS ONE 11: e0161130. https://doi.org/10.1371/journal.pone.0161130Google Scholar
Ngor, P.B., McCann, K.S., Grenouillet, G., So, N., McMeans, B.C., Fraser, E. & Lek, S. (2018). Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Scientific Reports 8: 8947. https://doi.org/10.1038/s41598–018-27340-1Google Scholar
North, A.C., Hodgson, D.J., Price, S.J. & Griffiths, A.G.F. (2015). Anthropogenic and ecological drivers of amphibian disease (ranavirosis). PLoS ONE 10: e0127037. https://doi.org/10.1371/journal.pone.0127037Google Scholar
Novak, P.A., Garcia, E.A., Pusey, B.J. & Douglas, M.M. (2017). Importance of the natural flow regime to an amphidromous shrimp: a case study. Marine and Freshwater Research 68: 909921.Google Scholar
Nyqvist, D., Nilsson, P.A., Alenäs, I., Elghagen, J., Hebrand, M., Karlsson, S., Kläpp, S. & Calles, O. (2017). Upstream and downstream passage of migrating adult Atlantic salmon: remedial measures improve passage performance at a hydropower dam. Ecological Engineering 102: 331343.Google Scholar
Obenour, D.R., Gronewold, A.D, Stow, C.A. & Scavia, D. (2014). Using a Bayesian hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water Resources Research 50: 78477860.Google Scholar
Oberdorff, T., Jézéquel, C., Campero, M., Carvajal-Vallejos, F., Cornu, J.F., Dias, M.S., Duponchelle, S., Maldonado-Ocampo, J.A., Ortega, H., Renno, J.F. & Tedesco, P.A. (2015). Opinion Paper: how vulnerable are Amazonian freshwater fishes to ongoing climate change? Journal of Applied Ichthyology 31: 49.Google Scholar
O’Connor, J.E., Duda, J.J., Grant, G.E. (2015). 1000 dams down and counting. Science 448: 496498.Google Scholar
Olden, J.D. & Naiman, R.J. (2010). Incorporating thermal regimes into environmental flow assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55 : 86107.Google Scholar
Olden, J.D., Hogan, Z.S. & Vander Zanden, J.V. (2007). Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Global Ecology and Biogeography 16: 694701.Google Scholar
Olden, J.D., Kennard, M., Lawler, J.J. & Poff, N.L. (2011). Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conservation Biology 25: 4047.Google Scholar
Olden, J.D., Konrad, C.P., Melis, T.S., Kennard, M.J., Freeman, M.C., Mims, M.C., Bray, E.N., Gido, K.B., Hemphill, N.P., Lytle, D.A., McMullen, L.E., Pyron, M., Robinson, C.T., Schmidt, J.C. & Williams, J.G. (2014). Are large-scale flow experiments informing the science and management of freshwater ecosystems? Frontiers in Ecology and the Environment 12: 176185.Google Scholar
O’Leary, J.K., Micheli, F., Airoldi, L., Boch, C., De Leo, G., Elahi, R., Ferretti, F., Graham, N.A.J., Litvin, S.Y., Low, N.H., Lummis, S., Nickols, K.J. & Wong, J. (2017). The resilience of marine ecosystems to climatic disturbances. BioScience 67: 208220.Google Scholar
Olivier, T.J., Handy, K.Q. & Bauer, R.T. (2013). Effects of river control structures on the juvenile migration of Macrobrachium ohione. Freshwater Biology 58: 16031613.Google Scholar
Olrik, K., Cronberg, G. & Annadotter, H. (2013). Lake phytoplankton responses to global climate changes. In Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies (Goldman, C. R., Kumagai, M. & Robarts, R. D., eds), John Wiley & Sons Ltd, Chichester: pp. 173199.Google Scholar
Ondračková, M., Dávidová, M., Blažek, R., Gelnar, M., Jurajda, P. (2009). The interaction between an introduced fish host and local parasite fauna: Neogobius kessleri in the middle Danube River. Parasitology Research 105: 201208.Google Scholar
O’Reilly, C.M., Alin, S.R., Plisnier, P.-D., Cohen, A.S. & McKee, B.A. (2003). Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766768.Google Scholar
O’Reilly, C.M., Sharma, S., Gray, D.K., Hampton, S.E., Read, J.S., Rowley, R.J., Schneider, P., Lenters, J.D., McIntyre, P.B., Kraemer, B.M., Weyhenmeyer, G.A., Straile, D., Dong, B., Adrian, R., Allan, M.G., Anneville, O., Arvola, L., Austin, J., Bailey, J.L., Baron, J.S., Brookes, J.D., Eyto, E., Dokulil, M.T., Hamilton, D.P., Havens, K., Hetherington, A.L., Higgins, S.N., Hook, S., Izmest’eva, L.R., Joehnk, K.D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D.M., MacIntyre, S., May, L., Melack, J.M., Mueller‐Navarra, D.C., Naumenko, M., Noges, P., Noges, T., North, R.P., Plisnier, P., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L.G., Rusak, J.A., Salmaso, N., Samal, N.R., Schindler, D.E., Schladow, S.G., Schmid, M., Schmidt, S.R., Silow, E., Soylu, M.E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C.E. & Zhang, G. (2015). Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10 77310 781. https://doi.org/10.1002/2015GL066235Google Scholar
Oreskes, N. & Conway, E.M. (2010). Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. Bloomsbury Press, New York.Google Scholar
Ormerod, S.J. (2014). Rebalancing the philosophy of river conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 147152.Google Scholar
Ormerod, S.J., Dobson, M., Hildrew, A.G. & Townsend, C.R. (2010). Multiple stressors in freshwater ecosystems. Freshwater Biology 55 (Suppl. 1): 14.CrossRefGoogle Scholar
Orr, S., Pittock, J., Chapagain, A. & Dumaresq, D. (2012). Dams on the Mekong River: lost fish protein and the implications for land and water resources. Global Environmental Change 22: 925932.Google Scholar
Ospina-Álvarez, N. & Piferrer, F. (2008). Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3 : e2837. https://doi.org/10.1371/journal.pone.0002837Google Scholar
Owen, C.T., McGregor, M.A., Cobbs, G.A., Alexander, J.E. (2011). Muskrat predation on a diverse unionid mussel community: impacts of prey species composition size and shape. Freshwater Biology 56: 554564.Google Scholar
Pacini, N. & Harper, D.M. (2008). Aquatic, semi-aquatic and riparian vertebrates. Tropical Stream Ecology (Dudgeon, D., ed.), Academic Press, Amsterdam: pp. 147197.Google Scholar
Page, L.M. & Hall, R.H. (2006). Identification of the sailfin catfishes (Teleostei: Loricariidae) in Southeast Asia. Raffles’ Bulletin of Zoology 54: 445452.Google Scholar
Page, S.E., Rieley, J.O. & Banks, C.J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17: 798818.Google Scholar
Pagnucco, K.S., Maynard, G.A., Fera, S.A., Yan, N.D., Nalepa, T.F. & Ricciardi, A. (2015). The future of species invasions in the Great Lakes-St. Lawrence River basin. Journal of Great Lakes Research 41 (Suppl. 1): 96107.Google Scholar
Palmer, M.A., Filoso, S. & Fanelli, R.M. (2014). From ecosystems to ecosystem services: stream restoration as ecological engineering. Ecological Engineering 65: 6270.CrossRefGoogle Scholar
Palmer, M.A., Menninger, H.L. & Bernhardt, E. (2010). River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology, 55 (Suppl. 1): 205222.Google Scholar
Palmer, M.A., Reidy Liermann, C.A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P.S. & Bond, N. (2008). Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment 6: 8189.Google Scholar
Palmer, M.A., Bernhardt, E.S., Allan, J.D., Lake, P.S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad Shah, J., Galat, D.L., Loss, S.G., Goodwin, P., Hart, D.D., Hassett, B., Jenkinson, R., Kondolf, G.M., Lave, R., Meyer, J.L., O’Donnell, T.K., Pagano, L. & Sudduth, E. (2005). Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208217.Google Scholar
Pandit, S.N., Maitland, B.M., Pandit, L.K., Poesch, M.S. & Enders, E.C. (2017). Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: carmine shiner (Notropis percobromus). Science of the Total Environment 598: 111.Google Scholar
Paolucci, E.M., Thuesen, E., Cataldo, D. & Boltovskoy, D. (2010).Veligers of an introduced bivalve (Limnoperna fortunei) are a new food resource that enhances growth of larval fish in the Paraná River (South America). Freshwater Biology 55: 18311844.Google Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637669.Google Scholar
Parry, L., Barlow, J. & Pereira, H. (2014). Wildlife harvest and consumption in Amazonia’s urbanized wilderness. Conservation Letters 7: 565574.Google Scholar
Pastor, A.V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. (2014). Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences 18: 50415059.Google Scholar
Patoka, J., Kopecký, O., Vrabec, V. & Kalous, L. (2017). Aquarium molluscs as a case study in risk assessment of incidental freshwater fauna. Biological Invasions 19: 20392046.Google Scholar
Patten, D.T., Harpman, D.A., Voita, M.I. & Randle, T.J. (2001). A managed flood on the Colorado River: background, objectives, design, and implementation. Ecological Applications 11: 635643.CrossRefGoogle Scholar
Peart, C.R., Bills, R., Wilkinson, M. & Day, J.J. (2014). Nocturnal claroteine catfishes reveal dual colonisation but a single radiation in Lake Tanganyika. Molecular Phylogenetics and Evolution 73: 119128.Google Scholar
Pease, A.A. & Paukert, C.P. (2014). Potential impacts of climate change on growth and prey consumption of stream-dwelling smallmouth bass in the central United States. Ecology of Freshwater Fish 23: 336346.CrossRefGoogle Scholar
Pelicice, F.M., Pompeu, P.S. & Agostinho, A.A. (2015). Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697715.Google Scholar
Pennisi, E. (2014). The river masters: hippos are the nutrient kingpins of Africa’s waterways. Science 346: 802805.Google Scholar
Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, E., Faith, D.P., Freyhof, J., Gregory, R.D., Heip, C., Hoft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M. & Wegmann, M. (2013). Essential biodiversity variables. Science 339: 277278.Google Scholar
Petersen, T.A., Brum, S.M., Rossoni, F., Silveira, G.F.V. & Castello, L. (2016). Recovery of arapaima populations by community-based management in floodplains of the Purus River, Amazon. Journal of Fish Biology 89: 241248.Google Scholar
Petrovic, M., Ginebreda, A., Muñoz, I. & Barceló, D. (2013). The river drugstore: the threats of emerging pollutants to river conservation. In River Conservation: Challenges and Opportunities (Sabatier, S. & Elosegi, A., eds), Fundación BBVA, Bilbao: pp. 105126.Google Scholar
Peverell, S.C. (2005). Distribution of sawfishes (Pristidae) in the Queensland Gulf of Carpentaria, Australia, with notes on their ecology. Environmental Biology of Fishes 73: 391402.Google Scholar
Pezaro, N., Doody, J.S. & Thompson, M.B. (2016). The ecology and evolution of temperature‐dependent reaction norms for sex determination in reptiles: a mechanistic conceptual model. Biological Reviews 92: 13481364.Google Scholar
Phillimore, A.B., Hadfield, J.D., Jones, O.R. & Smithers, R.J. (2010). Differences in spawning date between populations of common frog reveal local adaptation. Proceedings of the National Academy of Sciences of the United States of America 107: 82928297.Google Scholar
Pinder, A.C., Raghavan, R. & Britton, J.R. (2015). The legendary hump-backed mahseer Tor sp. of India’s River Cauvery: an endemic fish swimming towards extinction. Endangered Species Research 28: 1115.Google Scholar
Poff, N.L. (2018). Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshwater Biology 63: 10111128.Google Scholar
Poff, N.L. & Zimmerman, J.K. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194205.Google Scholar
Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., Apse, C., Bledsoe, B.P., Freeman, M., Henriksen, J., Jacobson, R.B., Kennen, J.G., Merritt, D.M., O’Keeffe, J.H., Olden, J.D., Rogers, K., Tharme, R.E. & Warner, A. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55: 147170.Google Scholar
Pollock, M.M., Heim, M. & Werner, D. (2003). Hydrologic and geomorphic effects of beaver dams and their influence on fishes. American Fisheries Society Symposium 31: 121.Google Scholar
Polvi, L.E. & Wohl, E. (2012). The beaver meadow complex revisited – the role of beavers in post-glacial floodplain development. Earth Surfaces Processes and Landforms 37: 332346.Google Scholar
Poly, W.J. (2003). Design and evaluation of a translocation strategy for the fringed darter (Etheostoma crossopterum) in Illinois. Biological Conservation 113: 1322.Google Scholar
Pompeu, P.S., Agostinho, A.A. & Pelicice, F.M. (2012). Existing and future challenges: the concept of successful fish passage in South America. River Research and Applications 28: 504512CrossRefGoogle Scholar
Pond, G.J. (2012). Biodiversity loss in Appalachian headwater streams (Kentucky, USA): Plecoptera and Trichoptera communities. Hydrobiologia 679: 97117.Google Scholar
Pool, T.K., Olden, J.D., Whittier, J.B. & Paukert, C.P. (2010). Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin. Canadian Journal of Fisheries and Aquatic Sciences 67: 17911807.Google Scholar
Poole, G.C. & Berman, C.H. (2001). An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management 27: 787802.Google Scholar
Poulsen, A.F., Ouch, P., Sintavong, V., Ubolratana, S. & Nguyen, T.T. (2002a). Fish migrations of the lower Mekong River Basin: implications for development, planning and environmental management. MRC Technical Paper No. 8. Mekong River Commission, Phnom Penh. www.mrcmekong.org/assets/Publications/technical/tech-No8-fish-migration-of-LMB.pdfGoogle Scholar
Poulsen, A., Poeu, O., Vivarong, S., Suntornratana, U. & Thanh Tung, N. (2002b). Deep pools as dry season fish habitats in the Mekong River Basin. MRC Technical Paper No. 4. Mekong River Commission, Phnom Penh. www.mrcmekong.org/assets/Publications/technical/tech-No4-Deep-pools-as-dry-season-fish-habitats.pdfGoogle Scholar
Price, S.J., Garner, T.W.J., Nichols, R.A., Balloux, F., Ayres, C., Mora-Cabello de Alba, A. & Bosch, J. (2014). Collapse of amphibian communities due to an introduced Ranavirus. Current Biology 24: 25862591.Google Scholar
Price, S.J., Garner, T.W.J., Cunningham, A.A., Langton, T.E.S. & Nichols, R.A. (2016). Reconstructing the emergence of a lethal infectious disease of wildlife supports a key role for spread through translocations by humans. Proceedings of the Royal Society B 283: 20160952. https://doi.org/10.1098/rspb.2016.0952Google Scholar
Pringle, R.M. (2005). The origins of the Nile perch in Lake Victoria. BioScience 55: 780787.Google Scholar
Pyke, G.H. (2008). Plague minnow or mosquitofish? A review of the biology and impacts of introduced Gambusia species. Annual Review of Ecology, Evolution, and Systematics 39: 171191.Google Scholar
Quinlan, E., Gibbins, C., Malcolm, I., Batalla, R., Vericat, D. & Hastie, L. (2014). A review of the physical habitat requirements and research priorities needed to underpin conservation of the endangered freshwater pearl mussel Margaritifera margaritifera. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 107124.Google Scholar
Raghavan, R., Dahanukar, N., Tlusty, M.F., Rhyne, A.L., Krishna Kumar, K., Molur, S. & Rosser, A.M. (2013). Uncovering an obscure trade: threatened freshwater fishes and the aquarium pet markets. Biological Conservation 164: 158169.Google Scholar
Rahel, F.J. (2002). Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33: 291315.Google Scholar
Rahel, F. (2013). Intentional fragmentation as a management strategy in aquatic systems. BioScience 63: 362372.Google Scholar
Rahel, F.J. & Olden, J.D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521533.Google Scholar
Ramachandran, R., Kumar, A., Gopi Sundar, K.S. & Bhalla, R.S. (2017). Hunting or habitat? Drivers of waterbird abundance and community structure in agricultural wetlands of southern India. Ambio 46: 613620.Google Scholar
Rees, H.C., Maddison, B.C., Middleditch, D.J., Patmore, J.R. & Gough, K.C. (2014). The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51: 14501459.CrossRefGoogle Scholar
Refsnider, J.M., Bodensteiner, B.L., Reneker, J.L. & Janzen, F.J. (2013). Nest depth may not compensate for sex ratio skews caused by climate change in turtles. Animal Conservation 16: 481490.Google Scholar
Refsnider, J.M., Milne-Zelman, C., Warner, D.A. & Janzen, F.J. (2014). Population sex ratios under differing local climates in a reptile with environmental sex determination. Evolutionary Ecology 28: 977989.Google Scholar
Reichard, M., Ondračková, M., Przybylski, M., Liu, H. & Smith, C. (2006). The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. Journal of Evolutionary Biology 19: 788796.Google Scholar
Reichard, M., Vrtílek, M., Douda, K. & Smith, C. (2012). An invasive species reverses the roles in a host–parasite relationship between bitterling fish and unionid mussels. Biology Letters 8: 601604.Google Scholar
Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D. & Cooke, S.J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849873.Google Scholar
Reid, G.M. (1990). Captive breeding for the conservation of cichlid fishes. Journal of Fish Biology 37: 157166.Google Scholar
Reidy Liermann, C.R., Nilsson, C., Robertson, J. & Ng, R.Y. (2012). Implications of dam obstruction for global freshwater fish diversity. Bioscience 62: 539548.Google Scholar
Renöfält, B.M., Lejon, A.G., Jonsson, M. & Nilsson, C. (2013). Long-term taxon-specific responses of macroinvertebrates to dam removal in a mid-sized Swedish stream. River Research and Applications 29: 10821089.Google Scholar
Revenga, C., Campbell, I., Abell, R., de Villiers, P. & Bryer, M. (2005). Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 397413.Google Scholar
Rhymer, J.M. & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27: 83109.Google Scholar
Ricciardi, A. & Rasmussen, J.B. (1998). Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Canadian Journal of Fisheries and Aquatic Sciences 55: 17591765.CrossRefGoogle Scholar
Ricciardi, A. & Simberloff, D. (2009). Assisted colonization is not a viable conservation strategy. Trends in Ecology & Evolution 24: 248253.Google Scholar
Ricciardi, A., Neves, R.J. & Rasmussen, J.B. (1998). Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology 67: 613619.Google Scholar
Richardson, J.S., Taylor, E., Schluter, D., Pearson, M. & Hatfield, T. (2010). Do riparian zones qualify as critical habitat for endangered freshwater fishes? Canadian Journal of Fisheries and Aquatic Sciences 67: 11971204.Google Scholar
Richter, B.D. & Thomas, G.A. (2007). Restoring environmental flows by modifying dam operations. Ecology and Society 12 : 2. www.ecologyandsociety.org/vol12/iss1/art12/Google Scholar
Richter, B.D., Warner, A.T., Meyer, J.L. & Lutz, K. (2006). A collaborative and adaptive process for developing environmental flow recommendations. River Research & Applications 22: 297318.Google Scholar
Richter, B.D., Postel, S., Revenga, C., Scudder, T., Lehner, B., Churchill, A. & Chow, M. (2010). Lost in development’s shadow: the downstream human consequences of dams. Water Alternatives 3: 1442.Google Scholar
Ripple, W.J. & Beschta, R.L. (2012). Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biological Conservation 145: 205213.Google Scholar
Roberts, T.R. (2001a). Killing the Mekong: China’s fluvicidal hydropower-cum-navigation development scheme. Natural History Bulletin of the Siam Society 49: 143159.Google Scholar
Roberts, T.R. (2001b). On the river of no returns: Thailand’s Pak Mun Dam and its fish ladder. Natural History Bulletin of the Siam Society 49: 189230.Google Scholar
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S. III, Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B.H., Liverman, D., Richardson, K., Crutzen, C. & Foley, J. (2009). A safe operating space for humanity. Nature 461: 472475.Google Scholar
Rödder, D., Kielgast, J., Bielby, J., Schmidtlein, S., Bosch, J., Garner, T.W.J., Veith, M., Walker, S., Fisher, M.C. & Lötters, S. (2009). Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1: 5266.CrossRefGoogle Scholar
Rogers, K.H. (2008). Limnology and the post-normal imperative: an African perspective. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 30: 171185.Google Scholar
Rohr, J.R. & Palmer, B.D. (2013). Climate change, multiple stressors, and the decline of ectotherms. Conservation Biology 27: 741751.Google Scholar
Rohr, J.R., Sesterhenn, T.M. & Stieha, C. (2011). Will climate change reduce the effects of a pesticide on amphibians? Partitioning effects on exposure and susceptibility to contaminants. Global Change Biology 17: 657666.Google Scholar
Roni, P., Beechie, T., Pess, G. & Hanson, K. (2015). Wood placement in river restoration: fact, fiction, and future direction. Canadian Journal of Fisheries and Aquatic Sciences 72: 466478.Google Scholar
Röpke, C.P., Amadio, S., Zuanon, J., Ferreira, E.J.G., de Deus, C.P., Pires, T.H.S. & Winemiller, K.O. (2017). Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Scientific Reports 7: 40170. https://doi.org/10.1038/srep40170Google Scholar
Rosenthal, S.K., Stevens, S.S. & Lodge, D.M. (2006). Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Canadian Journal of Fisheries and Aquatic Sciences 63: 12761285.Google Scholar
Rosell, F., Boszér, O., Collen, P. & Parker, H. (2005). Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal Review 35: 248276.Google Scholar
Roux, D.J., Nel, J.L., Ashton, P.J., Deacon, A.R., de Moor, F.C., Hardwick, D., Hill, L., Kleynhans, C.J., Maree, G.A., Moolman, J. & Scholes, R.J. (2008). Designing protected areas to conserve riverine biodiversity: lessons from a hypothetical redesign of the Kruger National Park. Biological Conservation 141: 100117.Google Scholar
Rowley, J.J.L., Emmett, D.A. & Voen, S. (2008). Harvest, trade and conservation of the Asian arowana Scleropages formosus in Cambodia. Aquatic Conservation: Marine and Freshwater Ecosystems 1812551266.Google Scholar
Rowley, J., Brown, R., Bain, R., Kusrini, M., Inger, R., Stuart, B., Wogan, G., Thy, N., Chan-ard, T., Trung, C.T., Diesmos, A., Iskandar, D.T., Lau, M., Ming, L.T., Makchai, S., Truong, N.Q. & Phimmachak, S. (2010). Impending conservation crisis for Southeast Asian amphibians. Biology Letters 6: 336338.Google Scholar
Rühland, K.M., Paterson, A.M. & Smol, J.P. (2015). Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 54: 135.Google Scholar
Russell, J.C., Sataruddin, N.S. & Heard, A.D. (2014). Over-invasion by functionally equivalent invasive species. Ecology 95: 22682276.Google Scholar
Ryan, M.E., Johnson, J.R. & Fitzpatrick, B.M. (2009). Invasive hybrid tiger salamander genotypes impact native amphibians. Proceedings of the National Academy of Sciences of the United States of America 109: 1116611171.Google Scholar
Rybczynski, N. (2007). Castorid phylogenetics: implications for the evolution of swimming and tree-exploitation in beavers. Journal of Mammalian Evolution 14: 135.Google Scholar
Rybczynski, N. (2008). Woodcutting behavior in beavers (Castoridae, Rodentia): estimating ecological performance in a modern and a fossil taxon. Paleobiology 34: 389402.Google Scholar
Saeed, F., Hagemann, S. & Jacob, D. (2009). Impact of irrigation on the South Asian summer monsoon. Geophysical Research Letters 36: L20711. https://doi.org/10.1029/2009GL040625Google Scholar
Salles, F.F., Gattolliat, J.-L., Angeli, K.B., De-Souza, M.R., Gonçalves, I.C., Nessimian, J.L., Sartori, M. (2014). Discovery of an alien species of mayfly in South America (Ephemeroptera). Zookeys 399: 116.Google Scholar
Sandel, M.J. (2012). What isn’t for sale? The Atlantic April 2012: 120.Google Scholar
Sandin, L., Schmidt-Kloiber, A, Svenning, J., Jeppesen, E. & Friberg, N. (2014). A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Current Zoology 60: 221232.Google Scholar
Santulli, G., Palazón, S., Melero, Y., Gosàlbez, J. & Lambin, X. (2014). Multi-season occupancy analysis reveals large scale competitive exclusion of the critically endangered European mink by the invasive non-native American mink in Spain. Biological Conservation 176: 2629.Google Scholar
Satgé, F., Espinoza, R., Zolá, R., Roig, H., Timouk, F., Molina, J., Garnier, J., Calmant, S., Seyler, F. & Bonnet, M.-P. (2017). Role of climate variability and human activity on Poopó Lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sensing 9: 218. https://doi.org/10.3390/rs9030218Google Scholar
Schaller, G.B. (1993). The Last Panda. University of Chicago Press, Chicago.Google Scholar
Scheffers, B.R., De Meester, L., Bridge, T.C.L., Hoffman, A.A., Pandolfini, J.M., Corlett, R.T., Butchart, S.H.M., Pearce-Kelly, P.P., Kovacs, K.M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W.B., Martin, T.G., Mora, C., Bickford, D. & Watson, J.E.M. (2016). The broad footprint of climate change from genes to biomes to people. Science 354 (6313): aaf7671aaf7671. https://doi.org/10.1126/science.aaf7671Google Scholar
Schlaepfer, M.A., Sax, D.F. & Olden, J.D. (2011). The potential conservation value of non-native species. Conservation Biology 25: 428437.Google Scholar
Schlaepfer, P.M., Hoover, C. & Dodd, C.K. (2005). Challenges in evaluating the impact of the trade in amphibians and reptiles on wild populations. BioScience 55: 256264.Google Scholar
Schloesser, D.W., Nalepa, T.F. & Mackie, G.L. (1996). Zebra mussel infestation of unionid bivalves (Unionidae) in North America. American Zoologist 36: 300310.Google Scholar
Schmidt, J.C., Webb, R.H., Valdez, R.A., Marzolf, G.R. & Stevens, L.E. (1998). Science and values in river restoration in the Grand Canyon. BioScience 48: 735747.Google Scholar
Schmidt-Kloiber, A., Bremerich, V., De Wever, A., Jähnig, S.C., Martens, K., Strackbein, J., Tockner, K. & Hering, D. (2019). The Freshwater Information Platform: a global online network providing data, tools and resources for science and policy support. Hydrobiologia 838: 111.Google Scholar
Scholes, R.J., Mace, G.M., Turner, W., Geller, G.N., Jurgens, N., Larigauderie, A., Muchoney, D., Walther, B.A. & Mooney, H.A. (2008). Towards a global biodiversity observing system. Science 321: 10441045.Google Scholar
Schwanz, L.E., Spencer, R.-J., Bowden, R.M. & Janzen, F.J. (2010). Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination. Ecology 91: 30163026.Google Scholar
Schwartz, M.W., Hellman, J.J. & McLachlan, J.S. (2009). The precautionary principle in managed relocation is misguided advice. Conservation Biology 24: 474.Google Scholar
Seehausen, O., van Alphen, J.J.M. & Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 18081811.Google Scholar
Selz, O.M., Pierotti, M.E.R., Maan, M.E., Schmid, C. & Seehausen, O. (2014). Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behavioural Ecology 25: 612626.Google Scholar
Serra, M.N., Albariño, R. & Villanueva, V.D. (2013). Invasive Salix fragilis alters benthic invertebrate communities and litter decomposition in northern Patagonian streams. Hydrobiologia 701: 173188.Google Scholar
Sheath, R.G. & Vis, M.L. (2013). Biogeography of Freshwater Algae, eLS. John Wiley & Sons, Chichester. https://doi.org/10.1002/9780470015902.a0003279.pub3Google Scholar
Sheldon, A.L. (2012). Possible climate-induced shift of stoneflies in a southern Appalachian catchment. Freshwater Science 31: 765774.Google Scholar
Sheridan, J.A. & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change 1: 401406.Google Scholar
Shiel, D., Ladd, B., Silva, L.C.R., Laffan, S.W. & Van Heist, M. (2016). How are soil carbon and tropical biodiversity related? Environmental Conservation 43: 231241.Google Scholar
Shiklomanov, I. (1993). World freshwater resources. In Water in Crisis: A Guide to the World's Freshwater Resources (Gleick, P.H., ed.), Oxford University Press, Oxford: pp. 1324.Google Scholar
Shine, R. (2010). The ecological impact of invasive cane toads (Bufo marinus) in Australia. Quarterly Review of Biology 85: 235291.Google Scholar
Shirley, M.H. (2014). Mecistops cataphractus. The IUCN Red List of Threatened Species 2014: e.T5660A3044332. http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T5660A3044332.enGoogle Scholar
Shu, F.-Y., Wang, H.-J., Pan, B.-Z., Liu, X.-Q. & Wang, H.-Z. (2009). Assessment of species status of Mollusca in the mid-lower Yangtze lakes. Acta Hydrobiologica Sinica 33: 10511058.Google Scholar
Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. (2018). Global water transfer megaprojects: a solution for the water-food-energy nexus? Frontiers in Environmental Science 6: 150. https://doi.org/10.3389/fenvs.2018.00150Google Scholar
Sierp, M., Qin, J. & Recknagel, F. (2008). Biomanipulation: a review of biological control measures in eutrophic waters and the potential for Murray cod Maccullochella peelii peelii to promote water quality in temperate Australia. Reviews in Fish Biology and Fisheries 19: 143165.Google Scholar
Sigsgaard, E.E., Carl, H., Møller, P.R. & Thomsen, P.F. (2015). Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation 183: 4652.Google Scholar
Silva, A.T., Lucas, M.C., Castro‐Santos, T., Katopodis, C., Baumgartner, L.J., Thiem, J.D., Aarestrup, K., Pompeu, P.S., O’Brien, G.C., Braun, D.C., Burnett, N.J., Zhu, D.Z., Fjeldstad, H., Forseth, T., Rajaratnam, N.G., Williams, J.G. & Cooke, S.J. (2018). The future of fish passage science, engineering, and practice. Fish and Fisheries 19: 340362.Google Scholar
Silvertown, J. (2015). Have ecosystem services been oversold? Trends in Ecology & Evolution 30: 641648.Google Scholar
Simberloff, D. & Rejmánek, M. (2011). Encyclopedia of Biological Invasions. University of California Press, Berkeley.Google Scholar
Simberloff, D. & Von Holle, B. (1999). Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 2132.Google Scholar
Simmons, M., Tucker, A., Chadderton, W.L., Jerde, C.L. & Mahon, A.R. (2016). Active and passive environmental DNA surveillance of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences 73: 7683.Google Scholar
Simoncini, M., Cruz, F.B., Larriera, A. & Piña, C.I. (2014). Effects of climatic conditions on sex ratios in nests of broad-snouted caiman. Journal of Zoology 293: 243251.Google Scholar
Skerratt, L.F., Berger, L., Speare, R., Cashins, S., McDonald, K.R., Phillott, A.D., Hines, H.B. & Kenyon, N. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4: 125134.Google Scholar
Skyrienė, G. & Paulauskas, A. (2012). Distribution of invasive muskrats (Ondatra zibethicus) and impact on ecosystem. Ekologija 58: 357367.Google Scholar
Smart, A.C., Harper, D.M., Malaisse, F., Schmitz, S., Coley, S. & Gouder de Beauregard, A.-C. (2002). Feeding of the exotic Louisiana red swamp crayfish, Procambarus clarkii (Crustacea, Decapoda), in an African tropical lake: Lake Naivasha, Kenya. Hydrobiologia 488: 129142.Google Scholar
Smirnov, V.V., Smirnova-Zalumi, N.S. & Sukhanova, L.V. (2012). Fishery management of omul (Coregonus autumnalis migratorius) as part of the conservation of ichthyofaunal diversity in Lake Baikal. Polish Journal of Natural Sciences 27: 203214.Google Scholar
Smith, S.H. (1968). Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada 25: 667693.Google Scholar
Snyder, C.D., Hitt, N.P. & Young, J.A. (2015). Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecological Applications 25: 13971419.Google Scholar
So, N., Souvanny, P., Ly, V., Theerawat, S., Son, N.H., Malasri, K., Peng Bun, N., Sovanara, K., Degen, P. & Starr, P. (2015). Lower Mekong fisheries estimated to be worth around $17 billion a year. Catch and Culture 21 (3): 47.Google Scholar
Sokolow, S.H., Huttinger, E., Jouanard, N., Hsieh, M.H., Lafferty, K.D., Kuris, A.M., Riveau, G., Senghor, S., Thiam, C., N’Diaye, A., Sarr Faye, D. & De Leo, G.A. (2015). Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proceedings of the National Academy of the United States of America 112: 96509655.Google Scholar
Sokolow, S.H., Jones, I.J., Jocque, M., La, D., Cords, O., Knight, A., Lund, A., Wood, C.L., Lafferty, K.D., Hoover, C.M., Collender, P.A., Remais, J.V., Lopez-Carr, D., Fisk, J., Kuris, A.M. & De Leo, G.A. (2017). Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 2100127. https://doi.org/10.1098/rstb.2016.0127Google Scholar
Song, Z., Zhang, J., Jiang, X. Wang, C. & Xie, Z. (2013). Population structure of an endemic gastropod in Chinese plateau lakes: evidence for population decline. Freshwater Science 32: 450461.Google Scholar
Sopha, L., Pengby, N., Nam, S. & Hortle, K.G. (2010). With fewer fry from upstream, Tonle Sap dai fishery catch declines in latest season. Catch and Culture 16 (1): 89.Google Scholar
Soulé, M.E. (1985). What is conservation biology? BioScience 35: 727734.Google Scholar
Sousa, R., Antunes, C. & Guilhermino, L. (2008). Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie 44: 8594.Google Scholar
Speed, R., Li, Y., Tickner, D., Huang, H., Naiman, R., Cao, J., Lei, G., Yu, L., Sayers, P., Zhao, Z. & Yu, W. (2016). River Restoration: A Strategic Approach to Planning and Management. UNESCO, Paris. http://unesdoc.unesco.org/images/0024/002456/245644e.pdfGoogle Scholar
Spencer, C.N., McClelland, B.R. & Stanford, J.A. (1991). Shrimp stocking, salmon collapse and eagle displacement. BioScience 41: 1421.Google Scholar
Spooner, D.E., Xenopoulos, M.A., Schneider, G. & Woolnough, D.A. (2011). Coextirpation of host–affiliate relationships in rivers: the role of climate change, water withdrawal, and host-specificity. Global Change Biology 17: 17201732.Google Scholar
Stamm, C.K., Räsänen, K., Burdon, F.J., Altermatt, F., Jokela, J., Joss, A., Ackermann, M. & Eggen, R.I.L. (2016). Unravelling the impacts of micropollutants in aquatic ecosystems: cross-disciplinary studies at the interface of large-scale ecology. Advances in Ecological Research 24: 183223.Google Scholar
Stauffer, J.R. Jr., Madsen, H., McKaye, K., Konings, A., Bloch, P., Ferreri, C.P., Likongwe, J. & Macaula, P. (2006). Schistosomiasis in Lake Malawi: relationship of fish and intermediate host density to prevalence of human infectionEcoHealth 3: 2227.Google Scholar
Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B. & Sörlin, S. (2015). Planetary boundaries: guiding human development on a changing planet. Science 347: 1259855. https://doi.org/10.1126/science.1259855Google Scholar
Steffensen, S.M., Thiem, J.D., Stamplecoskie, K.M., Binder, T.R., Hatry, C., Langlois-Anderson, N. & Cooke, S.J. (2013). Biological effectiveness of an inexpensive nature-like fishway for passage of warmwater fish in a small Ontario stream. Ecology of Freshwater Fish 22: 374383.Google Scholar
Stevens, L.E., Buck, K.A., Brown, B.T., Kline, N.C. (1997a). Dam and geomorphological influences on Colorado River waterbird distribution, Grand Canyon, Arizona, USA. Regulated Rivers: Research & Management 13: 151169.Google Scholar
Stevens, L.E., Shannon, J.P. & Blinn, D.W. (1997b). Colorado River benthic ecology in Grand Canyon, Arizona, USA: dam, tributary and geomorphological influences. Regulated Rivers: Research and Management 13: 129149.Google Scholar
Stevenson, R.J. & Esselman, P.C. (2013). Nutrient pollution: a problem with solutions. In River Conservation: Challenges and Opportunities (Sabatier, S. & Elosegi, A., eds), Fundación BBVA, Bilbao: pp. 77103.Google Scholar
Stewart-Koster, B., Bunn, S.E., MacKay, S.J., Poff, N.L., Naiman, R.J. & Lake, P.S. (2010). The use of Bayesian networks to guide investments in flow and catchment restoration for impaired river ecosystems. Freshwater Biology 55: 243260.Google Scholar
Stiassny, M.L.J. (1999). The medium is the message: freshwater biodiversity in peril. In The Living Planet in Crisis: Biodiversity Science and Policy (Cracraft, J. & Grifo, F.T., eds), Columbia University Press, New York: pp. 5371.Google Scholar
Still, D.A., Dickens, C., Breen, C.M., Mamder, M. & Booth, A. (2010). Balancing resource protection and development in a highly regulated river: the role of conjunctive use. Water SA 36: 371378.Google Scholar
Stone, R. (2008). A new great lake – or dead sea? Science 320: 10021005.Google Scholar
Strayer, D.L. (1999). Effects of alien species of freshwater mollusks in North America. Journal of the North American Benthological Society 18: 7498.Google Scholar
Strayer, D.L. (2006). Challenges for freshwater invertebrate conservation. Journal of the North American Benthological Society 25: 271287.Google Scholar
Strayer, D.L. (2010). Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55 (Suppl. 1): 152174.Google Scholar
Strayer, D.L. (2012). Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 11991210.Google Scholar
Strayer, D.L. (2017). What are freshwater mussels worth? Freshwater Mollusk Biology and Conservation 20: 103113.Google Scholar
Strayer, D.L. & Dudgeon, D. (2010). Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344358.Google Scholar
Strayer, D.L., Downing, J.A., Haag, W.R., King, T.L., Layer, J.B., Newton, T.J. & Nichols, S.J. (2004). Changing perspectives on pearly mussels, North America’s most imperiled animals. BioScience 54: 429439.Google Scholar
Strayer, D.L., Hattala, K.A. & Kahnle, A.W. (2004). Effects of an invasive bivalve (Dreissena polymorpha) on fish populations in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 61: 924941.Google Scholar
Strayer, D.L., Eviner, V.T., Jeschke, J.M. & Pace, M.L. (2006). Understanding the long-term effects of species invasions. Trends in Ecology & Evolution 21: 645651.Google Scholar
Sukenik, A., Hadas, O., Kaplan, A. & Quesada, A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes – physiological, regional, and global driving forces. Frontiers in Microbiology 3: 86. https://doi.org/10.3389/fmicb.2012.00086Google Scholar
Sullivan, S.M.P. & Manning, D.W.P. (2017). Seasonally distinct taxonomic and functional shifts in macroinvertebrate communities following dam removal. PeerJ 5: e3189. https://doi.org/10.7717/peerj.3189Google Scholar
Sullivan, S.M.P., Manning, D.W.P. & Davis, R.P. (2018). Do the ecological impacts of dam removal extend across the aquatic–terrestrial boundary? Ecosphere 9: e02180. https://doi.org/10.1002/ecs2.2180Google Scholar
Sunday, J.M., Bates, A.E., Kearney, M.R., Colwell, R.K., Dulvy, N.K., Longino, J.K. & Huey, R.B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America 111: 56105615.Google Scholar
Sung, Y.H. & Fong, J.J. (2018). Assessing consumer trends and illegal activity by monitoring the online wildlife trade. Biological Conservation 227: 219225.Google Scholar
Swaisgood, R.R. & Sheppard, J.K. (2010). The culture of conservation biologists: show me the hope! BioScience 60: 626630.Google Scholar
Sweeney, B.W. & Blaine, J. (2016). River conservation, restoration, and preservation: rewarding private behavior to enhance the commons. Freshwater Science 35: 755763.Google Scholar
Sweeney, B.W. & Newbold, J.D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. Journal of the American Water Resources Association 50: 560584.Google Scholar
Sylvester, F., Boltovskoy, D. & Cataldo, D. (2007). The invasive bivalve Limnoperna fortunei enhances benthic invertebrate densities in South American floodplain rivers. Hydrobiologia 589: 1527.Google Scholar
Syvitski, J.P.M. & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369: 957975.Google Scholar
Syvitski, J.P.M. & Milliman, J.D. (2007). Geology, geography and humans battle for dominance over the delivery of sediment to the coastal ocean. Journal of Geology 115: 119.Google Scholar
Syvitski, J.P.M., Kettner, A.J., Overeem, I., Hutton, E.W.H., Hannon, M.T., Brakenridge, G.R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L. & Nicholls, R.J. (2009). Sinking deltas due to human activities. Nature Geoscience 2: 681686.Google Scholar
Tan, X., Li, X., Lek, S., Li, Y., Wang, C., Li, J. & Luo, J. (2010). Annual dynamics of the abundance of fish larvae and its relationship with hydrological variation in the Pearl River. Environmental Biology of Fishes 88: 217225.Google Scholar
Taylor, B.W., Flecker, A.S. & Hall, R.O. (2006). Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313: 833836.Google Scholar
Taylor, C.A., Schuster, G.A., Cooper, J.E., DiStefano, R.J., Eversole, A.G., Hamr, H., Hobbs, H.H., Robinson, H.W., Skelton, C.E. & Thomas, R.F. (2007). A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32: 372389.Google Scholar
Tedesco, P.A., Oberdorff, T., Cornu, J.-F., Beauchard, O., Brosse, S., Dürr, H.H., Grenouillet, G., Leprieur, F., Tisseuil, C., Zaiss, R. & Hugueny, B. (2013). A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology 50: 11051115.Google Scholar
Tedesco, P.A., Beauchard, O. Bigorne, R., Blanchet, S., Buisson, L., Conti, L., Cornu, J., Dias, M.S., Grenouillet, G., Hugueny, B., Jézéquel, C., Leprieur, F., Brosse, S. & Oberdorff, T. (2017). A global database on freshwater fish species occurrence in drainage basins. Scientific Data 4: 170141. https://doi.org/10.1038/sdata.2017.141Google Scholar
Tharme, R.E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19: 397441.Google Scholar
Thewlis, R.M., Timmins, R.J., Evans, T.D. & Duckworth, J.W. (1998). The conservation status of birds in Laos: a review of key species. Bird Conservation International 8 (Suppl. 1): 1159.Google Scholar
Thieme, M.L., Abell, R., Stiassny, M.L.J., Lehner, B., Skelton, P., Teugels, G., Dinerstein, E., Kamden Toham, A., Burgess, B. & Olson, D. (2005 ). Freshwater Ecoregions of Africa and Madagascar. A Conservation Assessment. Island Press, Washington, DC.Google Scholar
Thieme, M.L., Lehner, B., Abell, R. & Matthews, R. (2010). Exposure of Africa’s freshwater biodiversity to a changing climate. Conservation Letters 3: 324331.Google Scholar
Thomas, C.D. (2011). Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology & Evolution 26: 216221.Google Scholar
Thompson, R.M. & Lake, P.S. (2010). Reconciling theory and practice: the role of stream ecology. River Research and Applications 26: 514.Google Scholar
Thompson, R.M., King, A.J., Kingsford, R.M., Mac Nally, R. & Poff, N.L. (2018). Legacies, lags and long-term trends: effective flow restoration in a changed and changing world. Freshwater Biology 63: 986995.Google Scholar
Thorburn, D.C. & Morgan, D.L. (2005). Threatened fishes of the world: Pristis microdon Latham 1794 (Pristidae). Environmental Biology of Fishes 72: 465466.Google Scholar
Thorson, T.B. (1976a). Observations on the reproduction of the sawfish. Pristis perotteti, in Lake Nicaragua, with recommendations for its conservation. In Investigations of the Ichthyofauna of Nicaraguan Lakes (Thorson, T.B., ed.), School of Life Sciences, University of Nebraska-Lincoln, Lincoln, NE: pp. 641650.Google Scholar
Thorson, T.B. (1976b). The status of the Lake Nicaragua shark: an updated appraisal. In Investigations of the Ichthyofauna of Nicaraguan Lakes (Thorson, T.B., ed.), School of Life Sciences, University of Nebraska-Lincoln, Lincoln, NE: pp. 561574.Google Scholar
Thresher, R.E., Allman, J. & Stremick-Thompson, L. (2018). Impacts of an invasive virus (CyHV-3) on established invasive populations of common carp (Cyprinus carpio) in North America. Biological Invasions 20: 17031718.Google Scholar
Tiegs, S.D., Levi, P.S., Rüegg, J., Chaloner, D.T., Tank, J.L. & Lamberti, G.A. (2011). Ecological effects of live salmon exceed those of carcasses during an annual spawning migration. Ecosystems 14: 598614.Google Scholar
Tierney, J.E., Mayes, M., Meyer, N., Johnson, C., Swarzenski, P.W., Cohen, A.S. & Russell, J.M. (2010). Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nature Geoscience 3: 422425.Google Scholar
Tilman, D., Isbell, F. & Cowles, J.M. (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics 45: 471493.Google Scholar
Timoshkin, O.A., Bondarenko, N.A., Volkova, Y.A., Tomberg, I.V., Vishnyakov, V.S. & Malnk, V.V. (2015). Mass development of green filamentous algae of the genera Spirogyra and Stigeoclonium (Chlorophyta) in the littoral zone of the southern part of Lake Baikal. Hydrobiological Journal 51: 1323.Google Scholar
Todd, B.D., Scott, D.E., Pechmann, J.H. & Gibbons, J.W. (2010). Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian communityProceedings of the Royal Society of London B: Biological Sciences 278: 21912197.Google Scholar
Tomazzoni, A.C., Pedó, E. & Hartz, S.M. (2005). Feeding associations between capybaras Hydrochoerus hydrochaeris (Linnaeus) (Mammalia, Hydrochaeridae) and birds in the Lami Biological Reserve, Porto Alegre, Rio Grande do Sul, Brazil. Revista Brasileira de Zoologia 22: 712716.Google Scholar
Tonkin, J.D., Merritt, D.M., Olden, J.D., Reynolds, L.V. & Lytle, D.A. (2018). Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology & Evolution 2: 8693.Google Scholar
Tonkin, J.D., Poff, N.L., Bond, N.R., Horne, A., Merritt, D.M., Reynolds, L.V., Olden, J.D., Ruhl, A., Lytle, D.A. (2019). Prepare river ecosystems for an uncertain future. Nature 570: 301303.Google Scholar
Trolle, D., Nielsen, A., Rolighed, J., Thodsen, H., Andersen, H.E., Karlsson, I.B., Refsgaard, J.C., Olesen, J.E., Bolding, K., Kronvang, B., Søndergaard, M. & Jeppesen, S. (2015). Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Climate Research 64: 5572.Google Scholar
Tullos, D.D., Collins, M.J., Bellmore, J.R., Bountry, J.A., Connolly, P.J., Shafroth, P.B. & Wilcox, A.C. (2016). Synthesis of common management concerns associated with dam removal. Journal of the American Water Resources Association 52: 11791206.Google Scholar
Turak, E., Dudgeon, D., Harrison, I.J., Freyhof, J., De Wever, A., Revenga, C., Garcia-Moreno, J., Abell, R., Culp, J.M., Lento, J., Mora, B., Hilarides, L. & Flink, S. (2017a). Observations of inland water biodiversity: progress, needs and priorities. In The GEO Handbook on Biodiversity Observation Networks (Walters, M. & Scholes, R.J., eds), Springer, Cham: pp. 165186. https://doi.org/10.1007/978-3-319-27288-7_7Google Scholar
Turak, E., Harrison, I., Dudgeon, D., Abell, R., Bush, A., Darwall, W., Finlayson, M., Ferrier, S., Freyhof, J., Hermoso, V., Juffe-Bignoli, D., Linke, S., Nel, J., Patricio, H., Pittock, J., Raghavan, R., Revenga, C. & Simaika, J. (2017b). Essential biodiversity variables for measuring change in global freshwater biodiversity. Biological Conservation 213: 272279.Google Scholar
Turner, G.F., Seehausen, O., Knight, M.E., Allender, C.J. & Robinson, R.L. (2001). How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793806.Google Scholar
Turvey, S.T., Pitman, R.L., Taylor, B.L., Barlow, J., Akamatsu, T., Barrett, L.A., Zhao, X.J., Reeves, R.R., Stewart, B.S., Wang, K.X., Wei, Z., Zhang, X.F., Pesser, L.T., Richlen, M., Brandon, J.R. & Wang, D. (2007). First human-caused extinction of a cetacean species. Biology Letters 3: 537540.Google Scholar
Turvey, S.T., Barrett, L.A., Hao, Y., Zhang, L., Zhang, X., Wang, X., Hunag, Y., Zhou, K., Hart, T. & Wang, D. (2010). Rapidly shifting baselines in Yangtze fishing communities and local memory of extinct species. Conservation Biology 24: 778787.Google Scholar
Tweddle, D., Cowx, I.G., Peel, R.A. & Weyl, O.L.F. (2012). Challenges in fisheries management in the Zambezi, one of the great rivers of Africa. Fisheries Management and Ecology 22: 99111.Google Scholar
Tyus, H.M. & Saunders, J.F. (2000). Nonnative fish control and endangered fish recovery: lessons from the Colorado River. Fisheries 25: 1724.Google Scholar
UNEP (2016). Transboundary River Basins: Status and Trends. United Nations Environment Programme (UNEP), Nairobi.Google Scholar
United States Fish & Wildlife Service (2008). Sonny Bono Salton Sea National Wildlife Refuge: Wildlife List. www.fws.gov/saltonsea/pdf/SaltonSeaWildlifeList%2708.6.pdfGoogle Scholar
United States Geological Survey (2014). Marisa cornuarietis. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=981Google Scholar
Utevsky, S., Zagmajster, M. & Trontelj, P. (2014). Hirudo medicinalis. The IUCN Red List of Threatened Species 2014: e.T10190A21415816. http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T10190A21415816.enGoogle Scholar
Vadadi-Fülöp, C., Sipkay, C., Mészáros, G. & Hufnagel, L. (2012). Climate change and freshwater zooplankton: what does it boil down to? Aquatic Ecology 46: 501519.Google Scholar
Vadeboncoeur, Y., McIntyre, P.B., Vander Zanden, M.J. (2011). Borders of biodiversity: life at the edge of the world’s large lakes. Bioscience 61: 526537.Google Scholar
Valdez, R.A., Hoffnagle, T.L., McIvor, C.C., McKinney, T. & Leibfried, W.C. (2001). Effects of the test flood on Fishes of the Colorado River in Grand Canyon, Arizona. Ecological Applications 11: 686700.Google Scholar
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P.F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F. & Gaboriaud, C. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology 25: 929942.Google Scholar
Van der Velde, G., Paffen, B.G.P., Van den Brink, F.W.B., Bij de Vaate, A. & Jenner, H.A. (1994). Decline of zebra mussel populations in the Rhine. Competition between two mass invaders (Dreissena polymorpha and Corophium curvispinum). Naturwissenschaften 81: 3234.Google Scholar
Van Dijk, P.P. (2000). The status of turtles in Asia. In Asian Turtle Trade: Proceedings of a Workshop on Conservation and Trade of Freshwater Turtles and Tortoises in Asia (Van Dijk, P.P., Stuart, B.I. & Rhodin, A.G.J., eds), Chelonian Research Monographs No. 2, Chelonian Research Foundation, Lunenberg: pp. 1523.Google Scholar
van Lookeren Campagne, C. & Begum, S. (2017). Red Gold and Fishing in the Lake Chad Basin. Oxfam Briefing Note (February 2017), Oxfam GB, Oxford. www.oxfam.org/sites/www.oxfam.org/files/file_attachments/bn-red-gold-fishing-lake-chad-010217-en.pdfGoogle Scholar
van Rijssel, J.C. & Witte, F. (2013). Adaptive responses in resurgent Lake Victoria cichlids over the past 30 years. Evolutionary Ecology 27: 253267.Google Scholar
Van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P. & Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change 23: 450464.Google Scholar
Vanderploeg, H.A., Nalepa, T.F., Jude, D.J., Mills, E.L., Holeck, K.T, Liebig, J.R., Grigorovich, I.A. & Ojaveer, H. (2002). Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 12091228.Google Scholar
Vanham, D., Comero, S., Gawlik, B.M. & Bidoglio, G. (2018). The water footprint of different diets within European sub-national geographical entities. Nature Sustainability 1: 518525. http://doi.org/10.1038/s41893–018-0133-xGoogle Scholar
Varis, O. (2014). Curb vast water use in central Asia. Nature 514: 2729.Google Scholar
Vass, K.K., Tyagi, R.K., Singh, H.P. & Pathak, V. (2010). Ecology, changes in fisheries, and energy estimates in the middle stretch of the River Ganges. Aquatic Ecosystem Health & Management 13: 374384.Google Scholar
Vaughn, C.C. (2010). Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 2535.Google Scholar
Vaughn, C.C. (2018). Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 1527.Google Scholar
Verburg, P. & Hecky, R.E. (2009). The physics of the warming of Lake Tanganyika by climate change. Limnology & Oceanography 54: 24182430.Google Scholar
Verburg, P., Hecky, R.E. & Kling, H. (2003). Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505507.Google Scholar
Verpoorter, C., Kutser, T., Seekell, D.A. & Tranvik, L.J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters 41: 2014GL060641. https://doi.org/10.1002/2014GL060641Google Scholar
Verschuren, D., Johnson, T.C., Kling, H.J., Edgington, D.N., Leavitt, P.R., Brown, E.T., Talbot, M.R. & Hecky, R.E. (2002). History and timing of human impact on Lake Victoria, East Africa. Proceedings of the Royal Society Biological Sciences Series B 269: 289294.Google Scholar
Vidthayanon, C. (2013). Tenualosa thibaudeaui. The IUCN Red List of Threatened Species 2013: e.T21627A9303248. http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T21627A9303248.enGoogle Scholar
Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T. & Brosse, S. (2011). Homogenization patterns of the world’s freshwater fish faunas. Proceedings of the National Academy of Sciences of the United States of America 108: 1800318008.Google Scholar
Vishwanath, W. (2010). Schizothorax richardsonii. The IUCN Red List of Threatened Species 2010: e.T166525A135873256. http://dx.doi.org/10.2305/IUCN.UK.2010-4.RLTS.T166525A6228314.enGoogle Scholar
Vitule, J.R.S., Umbria, S.C. & Aranha, J.M.R. (2006). Introduction of the African Catfish Clarias gariepinus (Burchell, 1822) into Southern Brazil. Biological Invasions 8: 677681.Google Scholar
Vitule, J.R.S., Freire, C.A. & Simberloff, D. (2009). Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98108.Google Scholar
Vitule, J.R.S., Freire, C.A., Vazquez, D.P., Nuñez, M.A. & Simberloff, D. (2012). Revisiting the potential conservation value of non-native species. Conservation Biology 26: 11531155.Google Scholar
Vogel, G. (2017). Where have all the insects gone? Science 356: 576579.Google Scholar
Vörösmarty, C., Lettenmaier, D., Lévêque, C., Meybeck, M., Pahl-Wostl, C., Alcamo, J., Cosgrove, W., Grassl, H., Hoff, H., Kabat, P., Lansigan, F., Lawford, R. & Naiman, R.J. (2004). Humans transforming the global water system. EOS, American Geophysical Union Transactions 85: 509514.Google Scholar
Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C. & Davies, P.M. (2010). Global threats to human water security and river biodiversity. Nature 467: 555561.Google Scholar
Vouvoulis, N., Arpon, K.D. & Giakoumis, T. (2017). The EU Water Framework Directive: from great expectations to problems with implementation. Science of the Total Environment 575: 358366.Google Scholar
Vrtílek, M. & Reichard, M. (2012). An indirect effect of biological invasions: the effect of zebra mussel fouling on parasitisation of unionid mussels by bitterling fish. Hydrobiologia 696: 205214.Google Scholar
Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M. & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe 26: 12. https://doi.org/10.1186/s12302–014-0012-7Google Scholar
Wake, D.B. & Vredenburg, V.T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of the United States of America 105 (Suppl. 1): 1146611473.Google Scholar
Wallace, J.S., Acreman, M.C. & Sullivan, C.A. (2003). The sharing of water between society and ecosystems: from conflict to catchment-based co-management. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 358: 20112026.Google Scholar
Walpole, A.A., Bowman, J., Tozer, D.C. & Badzinski, D.S. (2012). Community-level response to climate change: shifts in anuran calling phenology. Herpetological Conservation and Biology 7: 249257.Google Scholar
Walsh, J.R., Carpenter, S.R. & Vander Zanden, M.J. (2016). Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences of the United States of America 113: 40814085.Google Scholar
Walsh, M.R. & Reznick, D.N. (2008). Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America 105: 594599.Google Scholar
Wang, D., Turvey, S.T., Zhao, X. & Mei, Z. (2013). Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species 2013: e.T43205774A45893487. http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.enGoogle Scholar
Wang, H. (2003). Biology, population dynamics, and culture of Reeves shad, Tenualosa reevesii. American Fisheries Society Symposium 35: 7783.Google Scholar
Wang, H., Wu, X., Bi, N., Li, S., Yuan, P., Wang, A., Syvitski, J.P., Saito, Y., Yang, Z. & Nittrouer, J. (2017). Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Global and Planetary Change 157: 93113.Google Scholar
Wang, S., Yue, P.Q. & Chen, Y.Y. (1998). China Red Data Book of Endangered Animals. Pisces. Science Press, Beijing.Google Scholar
Wang, X., Fox, A.D., Cong, P. & Cao, L. (2013). Food constraints explain the restricted distribution of wintering lesser white-fronted geese Anser erythropus in China. Ibis 155: 576592.Google Scholar
Wang, Z., Liu, G.C.S., Burton, G.A. & Leung, K.M.Y. (2019). Thermal extremes can intensify chemical toxicity to freshwater organisms and hence exacerbate their impact to the biological community. Chemosphere 224: 256264.Google Scholar
Ward, J.M. & Ricciardi, A. (2007). Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysis. Diversity and Distributions 13: 155165.Google Scholar
Ward, J.M. & Ricciardi, A. (2010). Community-level effects of co-occurring native and exotic ecosystem engineers. Freshwater Biology 55: 18031817.Google Scholar
Warkentin, I.G., Bickford, D., Sodhi, N.S. & Bradshaw, C.J.A. (2009). Eating frogs to extinction. Conservation Biology 23: 10561059.Google Scholar
Waters, T.F. (1987). The Superior North Shore. A Natural History of Lake Superior’s Northern Lands and Waters. University of Minnesota Press, Minneapolis.Google Scholar
Weber, C., Åberg, U. , Buijse, A.D., Hughes, F.M., McKie, B.G., Piégay, H., Roni, P., Vollenweider, S. & Haertel‐Borer, S. (2018). Goals and principles for programmatic river restoration monitoring and evaluation: collaborative learning across multiple projects. WIREs Water 5: e1257. https://doi.org/10.1002/wat2.1257Google Scholar
Weber, M.J. & Brown, M.L. (2009). Effects of common carp on aquatic ecosystems 80 years after ‘carp as a dominant’: ecological insights for fisheries management. Reviews in Fisheries Science 17: 524537.Google Scholar
Weber, M.J. & Brown, M.L. (2011). Relationships among invasive common carp, native fishes, and physicochemical characteristics in upper Midwest (USA) lakes. Ecology of Freshwater Fish 20: 270278.Google Scholar
Wei, Q. (2010). Acipenser dabryanus. The IUCN Red List of Threatened Species 2010: e.T231A13041556. http://dx.doi.org/10.2305/IUCN.UK.2010-1.RLTS.T231A13041556.enGoogle Scholar
Welcomme, R.L., Cowx, I.G., Coates, D., Béné, C., Funge-Smith, S., Halls, A. & Lorenzen, K. (2010). Inland capture fisheries. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 28812896.Google Scholar
Welcomme, R.L., Baird, I.G., Dudgeon, D., Halls, A., Lamberts, D. & Mustafa, M.G. (2016). Fisheries of the rivers of Southeast Asia. In Freshwater Fisheries Ecology (Craig, J.F., ed.), John Wiley & Sons, Ltd., Chichester: pp. 363376.Google Scholar
Wenger, S.J., Isaak, D.J., Luce, C.H., Neville, H.M., Fausch, K.D., Dunham, J.B., Dauwalter, D.C., Young, M.K., Elsner, M.M., Rieman, B.E., Hamlet, A.F. & Williams, J.E. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America 108: 1417514180.Google Scholar
West, D., David, B. & Ling, N. (2014). Prototroctes oxyrhynchus. The IUCN Red List of Threatened Species 2014: e.T18384A20887241. http://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T18384A20887241.enGoogle Scholar
West, D.C., Walters, A.W., Gephard, S. & Post, D.M. (2010). Nutrient loading by anadromous alewife (Alosa pseudoharengus): contemporary patterns and predictions for restoration. Canadian Journal of Fisheries and Aquatic Sciences 67: 12111220.Google Scholar
White, W.T., Appleyard, S.A., Sabub, B., Kyne, P.M., Harris, M., Lis, R., Baje, L., Usu, T., Smart, J.J., Corrigan, S., Yang, L. & Naylor, G.J.P. (2015). Rediscovery of the threatened river sharks, Glyphis garricki and G. glyphis, in Papua New Guinea. PLoS ONE 10: e0140075. https://doi.org/10.1371/journal.pone.0140075Google Scholar
WHO (2018a). Drinking Water. World Health Organization Fact Sheet, WHO, Geneva. www.who.int/en/news-room/fact-sheets/detail/drinking-waterGoogle Scholar
WHO (2018b). Sanitation. World Health Organization Fact Sheet, WHO, Geneva. www.who.int/en/news-room/fact-sheets/detail/sanitationGoogle Scholar
WHO/UNICEF (2008). Progress on Drinking-Water and Sanitation: Special Focus on Sanitation. UNICEF, New York and WHO, Geneva.Google Scholar
Wiedner, C., Rücker, J., Brüggemann, R. & Nixdorf, B. (2007). Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152: 473484.Google Scholar
Wiens, J.J. (2016). Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14: e2001104. https://doi.org/10.1371/journal.pbio.2001104Google Scholar
Wikramanayake, E.D. (1990). Conservation of endemic rain forest fishes of Sri Lanka: results of a translocation experiment. Conservation Biology 4: 3237.Google Scholar
Wilby, R.L., Orr, H., Watts, G., Battarbee, R.W., Berry, P.M., Chadd, R., Dugdale, S.J., Dunbar, M.J., Elliott, J.A., Extence, C., Knights, B., Milner, N.J., Ormerod, S.J., Solomon, D., Timlett, R., Whitehead, P.J. & Wood, P.J. (2010). Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Science of the Total Environment 408: 41504164.Google Scholar
Wilcove, D.S., Giam, X., Edwards, D.P., Fisher, B. & Koh, L.P. (2013). Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution 28: 531540.Google Scholar
Wilde, S.B., Johansen, J.R., Wilde, H.D., Jiang, P., Bartelme, B. & Haynie, R.S. (2014). Aetokthonos hydrillicola gen. et sp. nov.: epiphytic cyanobacteria on invasive aquatic plants implicated in avian vacuolar myelinopathy. Phytotaxa 181: 443460.Google Scholar
Windsor, F.M., Tilley, R.M., Tyler, C.R. & Ormerod, S.J. (2019). Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment 646: 6874.Google Scholar
Winemiller, K.O. & Jepsen, D.B. (2004). Migratory Neotropical fish subsidize food webs of oligotrophic blackwater rivers. In Food Webs at the Landscape Level (Polis, G.A., Power, M.E. & Huxel, G.R., eds), University of Chicago Press, Chicago: pp. 115132.Google Scholar
Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I.G., Darwall, W., Lujan, N.K., Harrison, I., Stiassny, M.L.J., Silvano, R.A.M., Fitzgerald, D.B., Pelicice, F.M., Agostinho, A.A., Gomes, L.C., Albert, J.S., Baran, E., Petrere, M., Zarfl, C., Mulligan, M., Sullivan, J.P., Arantes, C.C., Sousa, L.M., Koning, A.A., Hoeinghaus, D.J., Sabaj, M., Lundberg, J.G., Armbruster, J., Thieme, M.L., Petry, P., Zuanon, J., Torrente Vilara, G., Snoeks, J., Ou, C., Rainboth, W., Pavanelli, C.S., Akama, A., van Soesbergen, A. & Sáenz, L. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128129.Google Scholar
Winston, R.L., Schwarzländer, M., Hinz, H.L., Day, M.D., Cock, M.J.W. & Julien, M.J. (2014). Biological Control of Weeds: A World Catalogue of Agents and Their Target Weeds, 5th ed. USDA Forest Service, Morgantown, WV.Google Scholar
Witte, F., Welten, M., Heemskerk, M., van der Stap, I., Ham, L., Rutjes, H. & Wanink, J. (2008). Morphological changes in a Lake Victoria cichlid fish within two decades. Biological Journal of the Linnean Society 94: 4152.Google Scholar
Wittmann, M., Cooke, R.M., Rothlisberger, J.D., Rutherford, E.S., Zhang, H., Mason, D.M. & Lodge, D.M. (2015). Use of structured expert judgment to forecast invasions by bighead and silver carp in Lake Erie. Conservation Biology 29: 187197.Google Scholar
Wittmann, M.E., Ngai, K.L. & Chandra, S. (2013). Our new biological future? The influence of climate change on the vulnerability of lakes to invasion by non-native species. In Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies (Goldman, C.R., Kumagai, M. & Robarts, R.D., eds), John Wiley & Sons Ltd, Chichester: pp. 255270.Google Scholar
Woodward, G., Perkins, D.M. & Brown, L.E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B 365: 20932106.Google Scholar
World Meteorological Organization (WMO) (2019). United in Science. High-level synthesis report of climate science information convened by the Science Advisory Group of the UN Climate Action Summit 2019, coordinated by the World Meteorological Organization, Geneva. https://public.wmo.int/en/resources/united_in_scienceGoogle Scholar
WWF (2018). Living Planet Report – 2018: Aiming Higher (Grooten, M. & Almond, R.E.A., eds), WWF, Gland, Switzerland.Google Scholar
WWF/ZSL (2016). The Living Planet Index database. WWF and the Zoological Society of London, London. www.livingplanetindex.orgGoogle Scholar
Wright, J. (2011). Conservative coevolution of Müllerian mimicry in a group of rift lake catfish. Evolution 65: 395407.Google Scholar
Wright, J.P., Jones, C.G. & Flecker, A.S. (2002). An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132: 96101.Google Scholar
Wu, J. (2015). Can changes in the distribution of lizard species over the past 50 years be attributed to climate change? Theoretical and Applied Climatology 125: 785798.Google Scholar
Xenopoulos, M.A., Lodge, D.M., Alcamo, J., Marker, M., Schulze, K. & Van Vuuren, D.P. (2005). Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 15571564.Google Scholar
Xie, S., Li, Z., Liu, J., Xia, S., Wang, H. & Murphy, B.R. (2007). Fisheries of the Yangtze River show immediate impacts of the Three Gorges Dam. Fisheries 32: 343344.Google Scholar
Xiong, L., Ouyang, S. & Wu, X. (2012). Fauna and standing crop of freshwater mussels in Poyang Lake, China. Chinese Journal of Oceanology and Limnology 30: 124135.Google Scholar
Yamanishi, Y., Yoshida, K., Fujimori, N. & Yusa, Y. (2012). Predator-driven biotic resistance and propagule pressure regulate the invasive applesnail Pomacea canaliculata in Japan. Biological Invasions 14: 13431352.Google Scholar
Ye, X., Li, Y., Li, X. & Zhang, Q. (2014). Factors influencing water level changes in China’s largest freshwater lake, Poyang Lake, in the past 50 years. Water International 39: 983999.Google Scholar
Ye, X., Lin, M., Li, L., Liu, J., Song, L. & Li, Z. (2015). Abundance and spatial variability of invasive fishes related to environmental factors in a eutrophic Yunnan Plateau lake, Lake Dianchi, southwestern China. Environmental Biology of Fishes 98: 209224.Google Scholar
Yipp, M.W. (1990). Distribution of the schistosome vector snail, Biomphalaria straminea (Pulmonata: Planorbidae) in Hong Kong. Journal of Molluscan Studies 56: 4755.Google Scholar
Yoon, J., Kim, J., Yoon, J., Baek, S. & Jang, M. (2015). Efficiency of a modified Ice Harbor-type fishway for Korean freshwater fishes passing a weir in South Korea. Aquatic Ecology 49: 417.Google Scholar
Youn, S., Taylor, W.W., Lynch, A.J., Cowx, I.G., Beard, T.D., Bartley, D. & Wu, F. (2014). Inland capture fishery contributions to global food security and threats to their future. Global Food Security 3: 142148.Google Scholar
Yousey, A.M., Chowdhury, P.R., Biddinger, N., Shaw, J.H., Jeyasingh, P.D. & Weider, L.J. (2018). Resurrected ‘ancient’ Daphnia genotypes show reduced thermal stress tolerance compared to modern descendants. Royal Society Open Science 5: 172193. https://doi.org/10.1098/rsos.172193Google Scholar
Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. (2011). The Anthropocene: a new era of geological time? Philosophical Transactions of the Royal Society A 369: 835841.Google Scholar
Zalasiewicz, J., Waters, C.N., do Sul, J.I., Corcoran, P.L., Barnosky, A.D., Cearreta, A., Edgeworth, M., Gałuszka, A., Jeandel, C., Leinfelder, R., McNeill, J.R., Steffen, W., Summerhayes, C., Wagreich, M., Williams, M., Wolfe, A.P. & Yonan, Y. (2016). The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13: 417.Google Scholar
Zambrano, L., Reidl, P.M., McKay, J., Griffiths, R., Shaffer, B., Flores-Villela, O., Parra-Olea, G. & Wake, D. (2010). Ambystoma mexicanum. The IUCN Red List of Threatened Species 2010: e.T1095A3229615. http://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T1095A3229615.enGoogle Scholar
Zaret, T.M. & Paine, R.T. (1973). Species introduction in a tropical lake: a newly introduced piscivore can produce population changes in a wide range of trophic levels. Science 182: 449455.Google Scholar
Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L. & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences 77: 161170.Google Scholar
Zavaleta, E. (2000). The economic value of controlling an invasive shrub. Ambio 29: 462467.Google Scholar
Zehev, B.S., Vera, A., Asher, B. & Raimundo, R. (2015). Ornamental fishery in Rio Negro (Amazon region), Brazil: combining social, economic and fishery analyses. Fisheries and Aquaculture Journal 6: 143147.Google Scholar
Zhang, F., Tiyip, T., Johnson, V.C., Kung, H., Ding, J., Sun, Q., Zhou, M., Kelimu, A., Nurmuhammat, I. & Chan, N.W. (2015). The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972–2013 period. Environmental Monitoring and Assessment 187: 4128. https://doi.org/10.1007/s10661–014-4128-4Google Scholar
Zhang, H., Wei, Q., Du, H., Shen, L., Li, Y. & Zhao, Y. (2009). Is there evidence that the Chinese paddlefish (Psephurus gladius) still survives in the upper Yangtze River? Concerns inferred from hydroacoustic and capture surveys, 2006–2008. Journal of Applied Ichthyology 25 (Suppl. 2): 9599.Google Scholar
Zhang, P., Zou, Y., Xie, Y., Zhang, H., Liu, X., Gao, D. & Feng, Y. (2018). Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China. Science of the Total Environment 636: 30238.Google Scholar
Zhang, Y., Jia, Q., Prins, H.H., Cao, L. & de Boer, W.F. (2015). Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River. Scientific Reports 5: 17136. https://doi.org/10.1038/srep17136Google Scholar
Zhao, X., Barlow, J., Taylor, B.L., Pitman, R.L., Wang, K., Wei, Z., Stewart, B.S., Turvey, S.T., Akamatsu, T., Reeves, R.R. & Wang, D. (2008). Abundance and conservation status of the Yangtze finless porpoise in the Yangtze River, China. Biological Conservation 141: 30063018.Google Scholar
Zhou, Y., Michalak, A.M., Beletsky, D., Rao, Y.R. & Richards, R.P. (2015). Record-breaking Lake Erie hypoxia during 2012 drought. Enviromental Science & Technology 49: 800807.Google Scholar
Zieritz, A., Lopes-Lima, M., Bogan, A.E., Sousa, R., Walton, S., Rahim, K.A., Wilson, J.-J., Ng, P.-Y., Froufe, E. & McGowan, S. (2016). Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Science of the Total Environment 571: 10691078.Google Scholar
Ziv, G., Baran, E., Nam, S., Rodriguez-Iturbe, I. & Levin, S.A. (2012). Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences of the United States of America 109: 56095614.Google Scholar
Zonn, I.S., Glantz, M., Kosarev, A.N. & Kostianoy, A.G. (2009). The Aral Sea Encyclopedia. Springer-Verlag, Berlin.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Dudgeon, The University of Hong Kong
  • Book: Freshwater Biodiversity
  • Online publication: 16 June 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Dudgeon, The University of Hong Kong
  • Book: Freshwater Biodiversity
  • Online publication: 16 June 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Dudgeon, The University of Hong Kong
  • Book: Freshwater Biodiversity
  • Online publication: 16 June 2020
Available formats
×