Book contents
- Frontmatter
- Contents
- Preface
- How to Use the Book
- First Steps
- Project 1: Rectangular Finite Quantum Well – Stationary Schrödinger Equation in 1D
- Project 2: Diffraction of Light on a Slit
- Project 3: Pendulum as a Standard of the Unit of Time
- Project 4: Planetary System
- Project 5: Gravitation inside a Star
- Project 6: Normal Modes in a Cylindrical Waveguide
- Project 7: Thermal Insulation Properties of a Wall
- Project 8: Cylindrical Capacitor
- Advanced Projects
- Project 9: Coupled Harmonic Oscillators
- Project 10: The Fermi–Pasta–Ulam–Tsingou Problem
- Project 11: Hydrogen Star
- Project 12: Rectangular Quantum Well Filled with Electrons – The Idea of Self-Consistent Calculations
- Project 13: Time Dependent Schrödinger Equation
- Project 14: Poisson’s Equation in 2D
- Appendix A: Supplementary Materials
- Further Reading
- Index
Project 2: - Diffraction of Light on a Slit
Published online by Cambridge University Press: 01 February 2024
- Frontmatter
- Contents
- Preface
- How to Use the Book
- First Steps
- Project 1: Rectangular Finite Quantum Well – Stationary Schrödinger Equation in 1D
- Project 2: Diffraction of Light on a Slit
- Project 3: Pendulum as a Standard of the Unit of Time
- Project 4: Planetary System
- Project 5: Gravitation inside a Star
- Project 6: Normal Modes in a Cylindrical Waveguide
- Project 7: Thermal Insulation Properties of a Wall
- Project 8: Cylindrical Capacitor
- Advanced Projects
- Project 9: Coupled Harmonic Oscillators
- Project 10: The Fermi–Pasta–Ulam–Tsingou Problem
- Project 11: Hydrogen Star
- Project 12: Rectangular Quantum Well Filled with Electrons – The Idea of Self-Consistent Calculations
- Project 13: Time Dependent Schrödinger Equation
- Project 14: Poisson’s Equation in 2D
- Appendix A: Supplementary Materials
- Further Reading
- Index
Summary
This chapter focuses on the numerical simulation of light diffraction by single or multiple slits, which serves to illustrate key principles of wave physics and interference. Students will become acquainted with numerical differentiation and quadrature procedures, particularly in relation to grid parameter convergence. The physics background emphasises wave physics elements, such as the superposition principle and phase difference, as well as their practical applications in real systems. Concepts such as optical paths and coherence are addressed. To understand diffraction phenomena, the Huygens principle is introduced, leading to the diffraction integral formulation for infinite slits. The chapter then explores numerical methods based on local approximations of functions, such as the two-, three-, and five-point schemes for derivatives. This study culminates in the presentation of quadrature schemes, the application of power series expansions for numerical differentiation, and the Simpson algorithm for accurate numerical integration.
Keywords
- Type
- Chapter
- Information
- A First Guide to Computational Modelling in Physics , pp. 7 - 17Publisher: Cambridge University PressPrint publication year: 2024