Published online by Cambridge University Press: 05 July 2014
Introduction
The behavior of dense granular materials, which consist of large collections of individual grains, is an example of a complex system. Despite the relative simplicity of the constituents, the large number of frictional contacts leads to indeterminacy, history dependance, and jamming. We still lack a general set of macroscopic equations to describe their flow. A continuum description of the relevant state variables is desirable, and early studies in soil mechanics focused on characterizing bulk stress/strain relationships and failure. However, it was determined through experiments using photoelastic materials [1–3] that forces transmitted through granular assemblies are carried through an inhomogeneous network of stress chains in which the majority of force is carried through chains of particles comprising a minority of grains (e.g. Figure 9.1(b)). The creation and failure of these chains are central to the fluctuations that can dominate in measurements of dense, granular systems [4].
To visualize internal stresses, these experiments used grains composed of photoelastic materials, which exhibit stress-induced birefringence. When placed between crossed polarizers, in a polariscope, the intensity of transmitted light varies with the local principal stress difference, allowing visualization of the internal stresses in the system. Regions of differential stress appear as a series of bright and dark fringes. The resulting pattern offers both an immediate insight into the spatial stress distribution and the opportunity to measure quantitative local force data in the sample.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.