Book contents
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- Observational projects
- Posters
- 29 Towards a helioseismic calibration of the equation of state in the solar convective envelope
- 30 Thermal cyclotron and annihilation radiation in strong magnetic fields
- 31 Modified adiabatic approximation for a hydrogen atom moving in a magnetic field
- 32 Computations of static white dwarf models: A must for asteroseismological studies
- 33 The Chandrasekhar mass of a gravitating electron crystal
- 34 Coulomb corrections in the nuclear statistical equilibrium regime
- 35 Molecular Opacities: Application to the Giant Planets
- 36 On Radiative Transfer Near the Plasma Frequency at Strong Coupling
- 37 Effects of Superfluidity on Spheroidal Oscillations of Neutron Stars
- 38 Magnetic Field Decay in the Non-superfluid Regions of Neutron Star Cores
- 39 On the equation of state in Jovian seismology
- 40 Analysis of the screening formalisms in solar and stellar conditions
- 41 Theoretical Description of the Coulomb Interaction by Padé-Jacobi Approximants
- 42 New Model Sequences from the White Dwarf Evolution Code
29 - Towards a helioseismic calibration of the equation of state in the solar convective envelope
from Posters
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- Observational projects
- Posters
- 29 Towards a helioseismic calibration of the equation of state in the solar convective envelope
- 30 Thermal cyclotron and annihilation radiation in strong magnetic fields
- 31 Modified adiabatic approximation for a hydrogen atom moving in a magnetic field
- 32 Computations of static white dwarf models: A must for asteroseismological studies
- 33 The Chandrasekhar mass of a gravitating electron crystal
- 34 Coulomb corrections in the nuclear statistical equilibrium regime
- 35 Molecular Opacities: Application to the Giant Planets
- 36 On Radiative Transfer Near the Plasma Frequency at Strong Coupling
- 37 Effects of Superfluidity on Spheroidal Oscillations of Neutron Stars
- 38 Magnetic Field Decay in the Non-superfluid Regions of Neutron Star Cores
- 39 On the equation of state in Jovian seismology
- 40 Analysis of the screening formalisms in solar and stellar conditions
- 41 Theoretical Description of the Coulomb Interaction by Padé-Jacobi Approximants
- 42 New Model Sequences from the White Dwarf Evolution Code
Summary
Abstract
We report the results of a nonlinear inversion of solar oscillation data that enable us to detect nonideal Coulomb interactions between particles, including pressure ionization, in the solar convection zone.
Introduction
Precise measurements of solar oscillation frequencies provide data for accurate inversions for the sound speed in the solar interior. Except in the very outer layers, the stratification of the convection zone is almost adiabatic. There, the sound-speed profile is governed principally by the specific entropy, the chemical composition and the equation of state, being essentially independent of the uncertainties in the radiative opacities. The inversions thus reveal, via tiny effects on the adiabatic compressibility of the solar plasma, physical processes that influence slightly the equation of state. We have carried out a nonlinear inversion based on a recent accurate asymptotic description of intermediate- and high-degree solar p modes (Brodsky & Vorontsov 1993; Gough & Vorontsov 1993), using the observational data of Libbrecht, Woodard & Kaufman (1990).
The equations of state (EOS) used in the analysis
In the reference models, we use the following equations of state. We are mostly brief, with the exception of the pressure-ionization model used in the helioseismic calibration.
Saha EOS: a free-energy-minimization type realization for a mixture of reacting ideal gases, with ground-state-only partition functions of the bound species. Note that by assuming only ground states we are using the term ‘Saha’ in a rather restricted sense.
[…]
- Type
- Chapter
- Information
- The Equation of State in AstrophysicsIAU Colloquium 147, pp. 545 - 549Publisher: Cambridge University PressPrint publication year: 1994
- 3
- Cited by