Published online by Cambridge University Press: 19 January 2010
Random fractals in Nature arise for a variety of reasons (dynamic chaotic processes, self-organized criticality, etc.) that are the focus of much current research. Percolation is one such chief mechanism. The importance of percolation lies in the fact that it models critical phase transitions of rich physical content, yet it may be formulated and understood in terms of very simple geometrical concepts. It is also an extremely versatile model, with applications to such diverse problems as supercooled water, galactic structures, fragmentation, porous materials, and earthquakes.
The percolation transition
Consider a square lattice on which each bond is present with probability p, or absent with probability 1 − p. When p is small there is a dilute population of bonds, and clusters of small numbers of connected bonds predominate. As p increases, the size of the clusters also increases. Eventually, for p large enough there emerges a cluster that spans the lattice from edge to edge (Fig. 2.1). If the lattice is infinite, the inception of the spanning cluster occurs sharply upon crossing a critical threshold of the bond concentration, p = pc.
The probability that a given bond belongs to the incipient infinite cluster, P∞, undergoes a phase transition: it is zero for p < pc, and increases continuously as p is made larger than the critical threshold pc (Fig. 2.2).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.