Published online by Cambridge University Press: 05 December 2015
We disseminate a set of small cells' field trial experiments conducted at 2.6 GHz and focused on coverage/capacity within multi-floor office buildings. LTE pico cells deployed indoors as well as LTE small cells deployed outdoors are considered. The latter rely on small emission power levels coupled with intelligent ways of generating transmission beams with various directivity levels by means of adaptive antenna arrays. Furthermore, we introduce an analytical three-dimensional (3D) performance prediction framework, which we calibrate and validate against field measurements. The framework provides detailed performance levels at any point of interest within a building; it allows us to determine the minimum number of small cells required to deliver desirable coverage and capacity levels, their most desirable location subject to deployment constraints, transmission power levels, antenna characteristics (beam shapes), and antenna orientation (azimuth, tilt) to serve a targeted geographical area. In addition, we disseminate specialized solutions for LTE small cells’ deployment within hotspot traffic venues, such as stadiums, through design and deployment feasibility analysis.
Introduction
Small cells are low-cost, low-power base stations designed to improve coverage and capacity of wireless networks. By deploying small cells on top and in complement to the traditional macro cellular networks, operators are in a much better position to provide the end users with a more uniform and improved quality of experience (QoE). Small cells’ deployment is subject to service delivery requirements, as well as to the actual constraints specific to the targeted areas. For a good uniformity of service, in populated areas where the presence of buildings is the main reason for significant radio signal attenuation, small cells may need to be closely spaced, e.g., within a couple of hundred meters from each other. Naturally, the performance of small cells is highly dependent on environment-specific characteristics, such as the materials used for building construction, their specific propagation properties, and the surroundings. It is particularly important to have a proper characterization of an environment where small cells are deployed.
This chapter focuses on in-building performance and feasibility of LTE small cells through measurements, taking as reference both outdoor small cell and indoor pico cell deployments. We created scenarios where wireless connectivity within a target building is offered either by small cells located on the exterior of other buildings (small cells with outdoor characteristics) or simply by small cells located within the target building (pico cells with indoor characteristics).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.