Book contents
- Frontmatter
- Contents
- Preface
- Unit Used
- Notations and Graphical Representations
- Abbreviations
- 1 Introduction
- 2 Basic Algebra of Tensors
- 3 Tensor Network Representation of Classical Statistical Models
- 4 Tensor Network Representation of Operators
- 5 Tensor Network Ansatz of Wave Functions
- 6 Criterion of Truncation: Symmetric Systems
- 7 Real-Space DMRG
- 8 Implementation of Symmetries
- 9 DMRG with Nonlocal Basis States
- 10 Matrix Product States
- 11 Infinite Matrix Product States
- 12 Determination of MPS
- 13 Continuous Matrix Product States
- 14 Classical Transfer Matrix Renormalization
- 15 Criterion of Truncation: Nonsymmetric Systems
- 16 Renormalization of Quantum Transfer Matrices
- 17 MPS Solution of QTMRG
- 18 Dynamical Correlation Functions
- 19 Time-Dependent Methods
- 20 Tangent-Space Approaches
- 21 Tree Tensor Network States
- 22 Two-Dimensional Tensor Network States
- 23 Coarse-Graining Tensor Renormalization
- Appendix Other Numerical Methods
- References
- Index
1 - Introduction
Published online by Cambridge University Press: 18 January 2024
- Frontmatter
- Contents
- Preface
- Unit Used
- Notations and Graphical Representations
- Abbreviations
- 1 Introduction
- 2 Basic Algebra of Tensors
- 3 Tensor Network Representation of Classical Statistical Models
- 4 Tensor Network Representation of Operators
- 5 Tensor Network Ansatz of Wave Functions
- 6 Criterion of Truncation: Symmetric Systems
- 7 Real-Space DMRG
- 8 Implementation of Symmetries
- 9 DMRG with Nonlocal Basis States
- 10 Matrix Product States
- 11 Infinite Matrix Product States
- 12 Determination of MPS
- 13 Continuous Matrix Product States
- 14 Classical Transfer Matrix Renormalization
- 15 Criterion of Truncation: Nonsymmetric Systems
- 16 Renormalization of Quantum Transfer Matrices
- 17 MPS Solution of QTMRG
- 18 Dynamical Correlation Functions
- 19 Time-Dependent Methods
- 20 Tangent-Space Approaches
- 21 Tree Tensor Network States
- 22 Two-Dimensional Tensor Network States
- 23 Coarse-Graining Tensor Renormalization
- Appendix Other Numerical Methods
- References
- Index
Summary
This chapter starts with an introductory survey on the physical background and historical events that lead to the emergence of the density matrix renormalization group (DMRG) and its tensor network generalization. We then briefly overview the major progress on the renormalization group methods of tensor networks and their applications in the past three decades. The tensor network renormalization was initially developed to solve quantum many-body problems, but its application field has grown constantly. It has now become an irreplaceable tool for investigating strongly correlated problems, statistical physics, quantum information, quantum chemistry, and artificial intelligence.
Keywords
- Type
- Chapter
- Information
- Density Matrix and Tensor Network Renormalization , pp. 1 - 34Publisher: Cambridge University PressPrint publication year: 2023