Published online by Cambridge University Press: 05 August 2012
By 1926, when quantum mechanics finally emerged as a coherent theory, the evidence for an atomic structure in Nature was overwhelming. Today, scanning microscopes allow us to “see” chemical atoms one-by-one. They are real. Since quantum theory makes no reference at all to particles, why then do we have all these particulate atoms, ions, and nuclei? How do we account for the success of those stick-and-ball models of molecules, or crystals, or Crick and Watson’s double-helixed DNA? The answer is that atomic nuclei are made of stuff that interacts with a force law that gives its assemblages an intrinsic tiny size. The parts are sizeless quantum entities, but the things they make can behave – most of the time – like microscopic particles. The force law and its properties are consequences of the fundamental symmetries of the Standard Model which I will now endeavor to describe.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.