Published online by Cambridge University Press: 04 June 2010
The Nash solution of the bargaining problem whose frontier is the cubic curve with Equation (5.1.11) is the point on the frontier where [(1 + A)x − y − a] (y − b) takes its maximum value. We use the Lagrange multiplier method to find the maximum. Set the Lagrangian equal to
Then
It follows from the condition ∂Λ/∂y = 0 that
Set a − b = α. Then
However, if
then
Substitute the expression for y into Equation (5.1.11) and clear the denominator. The result is the following equation in x.
To find the optima in Example 5.2.1., we computed the partial derivative of P, the payoff function, with respect to y. The result is a quadratic in x with a single solution S(d, x) that is in the interval [0, 1] when x ∈ [0, 1] and d ∈ (0.5, 1.5). The solution S(d, x) substituted for y in P. When the resulting function of x and d is optimized, values to be in chosen in [0, 1], the result is the expression given in the second section of Chapter 5. One can then compute the y coordinate ŷ for the optimal point. The expression for is the following.
Each of the entries F1, …, F7 is an expression in d. The expressions are the following.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.