Published online by Cambridge University Press: 05 June 2012
Our ultimate goal will be to present some celebrated theorems about inherent limits on what can be computed and on what can be proved. Before such results can be established, we need to undertake an analysis of computability and an analysis of provability. Computations involve positive integers 1, 2, 3, … in the first instance, while proofs consist of sequences of symbols from the usual alphabet A, B, C, … or some other. It will turn out to be important for the analysis both of computability and of provability to understand the relationship between positive integers and sequences of symbols, and background on that relationship is provided in the present chapter. The main topic is a distinction between two different kinds of infinite sets, the enumerable and the nonenumerable. This material is just a part of a larger theory of the infinite developed in works on set theory: the part most relevant to computation and proof. In section 1.1 we introduce the concept of enumerability. In section 1.2 we illustrate it by examples of enumerable sets. In the next chapter we give examples of nonenumerable sets.
Enumerability
An enumerable, or countable, set is one whose members can be enumerated: arranged in a single list with a first entry, a second entry, and so on, so that every member of the set appears sooner or later on the list.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.