Published online by Cambridge University Press: 24 November 2009
Introduction
In this chapter we develop a strong bisimulation, based on the labelled multi-transition system for PEPA developed in Chapter 3, and examine some of its properties. The strong bisimulation relation aims to capture the idea that strongly bisimilar components are able to perform the same activities, resulting in derivatives that are themselves strongly bisimilar. In Section 7.2 we show how this property may be expressed in the definition of a strong bisimulation relation. Strong bisimilarity is then defined as the largest relation satisfying the conditions of a strong bisimulation relation.
The rest of the chapter is concerned with the properties exhibited by the strong bisimilarity relation, ∼. In Section 7.3 the relation is investigated from a process algebra perspective. In particular it is shown that strong bisimilarity is a congruence relation for PEPA. The implications of strong bisimilarity for the system components being modelled are discussed in Section 7.4. The relationship between strong bisimilarity and the underlying Markov process is examined in Section 7.5, as we investigate whether the partition induced by the relation forms a suitable basis for exact aggregation. This is found not to be the case.
Finally in Section 7.6 we suggest how strong bisimilarity may be used as a model simplification technique. The relation is used to find components which exhibit the same activities. These may then be subjected to a simple further test to ensure that the behaviours of the components are indeed the same.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.