Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T05:30:32.542Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 August 2020

Jürgen Schaffner-Bielich
Affiliation:
Goethe-Universität Frankfurt Am Main
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Compact Star Physics , pp. 295 - 305
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6), 061102.Google ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b. Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy. Phys. Rev. D, 93(11), 112004. [Addendum: ibid. D 97 (2018) 059901].Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a. First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophys. J., 839(1), 12. [Erratum: ibid. 851 (2017) 71].Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16), 161101.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017c. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J., 848(2), L13.CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017d. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J., 848(2), L12.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018a. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 9, 031040.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018b. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett., 121(16), 161101.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018c. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel., 21(1), 3.CrossRefGoogle ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019a. Searches for Continuous Gravitational Waves from Fifteen Supernova Remnants and Fomalhaut b with Advanced LIGO. Astrophys. J., 875(2), 122.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019b. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophys. J., 879(1), 10.CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019c. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X, 9(1), 011001.Google Scholar
Abelev, B. I., Aggarwal, M. M., Ahammed, Z., et al. 2007. Strangelet Search at RHIC. Phys. Rev., C, 76, 011901.Google Scholar
Acharya, S. et al. [ALICE Collaboration] 2019. Study of the Λ-Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC. Phys. Lett. B 797, 134822.CrossRefGoogle Scholar
Ade, P. A. R., Aghanim, N., Arnaud, M., et al. 2016. Planck 2015 Results. XIII. Cosmological Parameters. Astron. Astrophys., 594, A13.Google Scholar
Agnihotri, Pratik, Schaffner-Bielich, Jürgen, and Mishustin, Igor N. 2009. Boson Stars with Repulsive Selfinteractions. Phys. Rev. D, 79, 084033.CrossRefGoogle Scholar
Akiyama, Kazunori, Alberdi, Antxon, Alef, Walter, et al. 2019. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J., 875(1), L1.Google Scholar
Alcock, Charles, Farhi, Edward, and Olinto, Angela. 1986. Strange Stars. Astrophys. J., 310, 261.Google Scholar
Alford, Mark G., Burgio, G. F., Han, Sophia, Taranto, Gabriele, and Zappalà, Dario. 2015. Constraining and Applying a Generic High-Density Equation of State. Phys. Rev. D, 92(8), 083002.Google Scholar
Alford, Mark G., Han, Sophia, and Prakash, Madappa. 2013. Generic Conditions for Stable Hybrid Stars. Phys. Rev. D, 88(8), 083013.Google Scholar
Alvarez-Castillo, D. E., and Blaschke, D. 2015. Mixed Phase Effects on High-Mass Twin Stars. Phys. Part. Nucl., 46(5), 846848.Google Scholar
Ambartsumyan, V. A., and Saakyan, G. S. 1960. The Degenerate Superdense Gas of Elementary Particles. Sov. Astron., 4, 187.Google Scholar
Ambartsumyan, V. A., and Saakyan, G. S. 1962. On Equilibrium Configurations of Superdense Degenerate Gas Masses. Soviet Astronomy, 5, 601.Google Scholar
Annala, Eemeli, Gorda, Tyler, Kurkela, Aleksi, and Vuorinen, Aleksi. 2018. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett., 120(17), 172703.Google Scholar
Antoniadis, John, Freire, Paulo C. C., Wex, Norbert, et al. 2013. A Massive Pulsar in a Compact Relativistic Binary. Science, 340, 6131.CrossRefGoogle Scholar
Archibald, Anne M., Gusinskaia, Nina V., Hessels, Jason W. T., et al. 2018. Universality of Free Fall from the Orbital Motion of a Pulsar in a Stellar Triple System. Nature, 559(7712), 7376.Google Scholar
Arzoumanian, Zaven, Brazier, Adam, Burke-Spolaor, Sarah, et al. 2018. The NANOGrav 11-Year Data Set: High-Precision Timing of 45 Millisecond Pulsars. Astrophys. J. Suppl., 235(2), 37.CrossRefGoogle Scholar
Audley, Heather, Babak, Stanislav, Baker, John, et al. 2017. Laser Interferometer Space Antenna. www.elisascience.org/files/publications/LISAL3 20170120.pdf.Google Scholar
Baade, W. 1942. The Crab Nebula. Astrophys. J., 96, 188.Google Scholar
Baade, Walter, and Zwicky, Fritz. 1934a. Supernovae and Cosmic Rays. Phys. Rev., 45, 138.Google Scholar
Baade, Walter, and Zwicky, Fritz. 1934b. Cosmic Rays from Super-Novae. Proc. Natl. Acad. Sci. USA, 20, 259.Google Scholar
Baluni, Varouzhan. 1978. Nonabelian Gauge Theories of Fermi Systems: Chromotheory of Highly Condensed Matter. Phys. Rev. D, 17, 2092.CrossRefGoogle Scholar
Bardeen, J. M., Thorne, K. S., and Meltzer, D. W. 1966. A Catalogue of Methods for Studying the Normal Modes of Radial Pulsation of General-Relativistic Stellar Models. Astrophys. J., 145, 505.Google Scholar
Barstow, Martin Adrian, Bond, Howard E., Holberg, J. B., Burleigh, M. R., Hubeny, I., and Koester, D. 2005. Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B. Mon. Not. Roy. Astron. Soc., 362, 11341142.Google Scholar
Baym, G., and Chin, S. A. 1976. Can a Neutron Star Be a Giant MIT Bag? Phys. Lett. B, 62, 241244.Google Scholar
Baym, Gordon, Pethick, Christopher, and Sutherland, Peter. 1971. The Ground State of Matter at High Densities: Equation of State and Stellar Models. Astrophys. J., 170, 299317.CrossRefGoogle Scholar
Bazavov, A., Bhattacharya, T., DeTar, C., et al. 2014. Equation of State in (2+1)-Flavor QCD. Phys. Rev. D, 90, 094503.Google Scholar
Bell-Burnell, S. J. 1977. Petit Four. Annals of the New York Academy of Sciences, 302, 685.Google Scholar
Bell Burnell, J. 2009. Reflections on the Discovery of Pulsars. Page 14 of: Proceedings of the Special Session “Accelerating the Rate of Astronomical Discovery” of the 27th IAU General Assembly. August 11–14, 2009. Rio de Janeiro, Brazil.Google Scholar
Berry, D. K., Caplan, M. E., Horowitz, C. J., Huber, Greg, and Schneider, A. S. 2016. “Parking-Garage” Structures in Nuclear Astrophysics and Cellular Bio-physics. Phys. Rev. C, 94(5), 055801.CrossRefGoogle Scholar
Bertotti, B., Iess, L., and Tortora, P. 2003. A Test of General Relativity Using Radio Links with the Cassini Spacecraft. Nature, 425, 374376.CrossRefGoogle ScholarPubMed
Bethe, H. A., and Bacher, R. F. 1936. Nuclear Physics A. Stationary States of Nuclei. Rev. Mod. Phys., 8, 82229.Google Scholar
Bodmer, A. R. 1971. Collapsed Nuclei. Phys. Rev. D, 4, 1601.CrossRefGoogle Scholar
Boguta, J., and Stöcker, Horst. 1983. Systematics of Nuclear Matter Properties in a Nonlinear Relativistic Field Theory. Phys. Lett. B, 120, 289293.CrossRefGoogle Scholar
Bond, H. E., Bergeron, P., and Bedard, A. 2017b. Astrophysical Implications of a New Dynamical Mass for the Nearby White Dwarf 40 Eridani B. Astrophys. J., 848, 16.CrossRefGoogle Scholar
Bond, H. E., Gilliland, R. L., Schaefer, G. H., et al. 2015. Hubble Space Telescope Astrometry of the Procyon System. Astrophys. J., 813, 106.CrossRefGoogle Scholar
Bond, H. E., Schaefer, G. H., Gilliland, R. L., et al. 2017a. The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-Based Astrometry. Astrophys. J., 840, 70.Google Scholar
Buchdahl, Hans A. 1959. General Relativistic Fluid Spheres. Phys. Rev., 116, 1027.Google Scholar
Burgay, Marta, D’Amico, N., Possenti, A., et al. 2003. An Increased Estimate of the Merger Rate of Double Neutron Stars from Observations of a Highly Relativistic System. Nature, 426, 531533.Google Scholar
Burwitz, Vadim, Haberl, F., Neuhaeuser, R., et al. 2003. The Thermal Radiation of the Isolated Neutron Star RX J1856.5-3754 Observed with Chandra and XMM-Newton. Astron. Astrophys., 399, 11091114.Google Scholar
Busza, W., Jaffe, R. L., Sandweiss, J., and Wilczek, Frank. 2000. Review of Speculative “Disaster Scenarios” at RHIC. Rev. Mod. Phys., 72, 11251140.Google Scholar
Cameron, A. G. W. 1959. Neutron Star Models. Astrophys. J., 130, 884.Google Scholar
Chabanat, E., Meyer, J., Bonche, P., Schaeffer, R., and Haensel, P. 1997. A Skyrme Parametrization from Subnuclear to Neutron Star Densities. Nucl. Phys. A, 627, 710746.Google Scholar
Chandrasekhar, S. 1931a. The Highly Collapsed Configurations of a Stellar Mass. Mon. Not. Roy. Astron. Soc., 91(5), 456466.CrossRefGoogle Scholar
Chandrasekhar, S. 1931b. The Maximum Mass of Ideal White Dwarfs. Astrophys. J., 74, 8182.Google Scholar
Chandrasekhar, Subrahmanyan. 1939. An Introduction to the Study of Stellar Structure. Chicago: The University of Chicago Press.Google Scholar
Chatterjee, Debarati, and Vidaña, Isaac. 2016. Do Hyperons Exist in the Interior of Neutron Stars? Eur. Phys. J. A, 52(2), 29.Google Scholar
Chodos, A., Jaffe, R. L., Johnson, K., Thorn, Charles B., and Weisskopf, V. F. 1974. A New Extended Model of Hadrons. Phys. Rev. D, 9, 34713495.Google Scholar
Chowdhury, P. Roy., and Basu, D. N. 2006. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model. Acta Phys. Polon. B, 37, 18331846.Google Scholar
Cocke, W. J., Disney, M. J., and Taylor, D. J. 1969. Discovery of Optical Signals from Pulsar NP 0532. Nature, 221, 525.Google Scholar
Colpi, M., Shapiro, S. L., and Wasserman, I. 1986. Boson Stars: Gravitational Equilibria of Selfinteracting Scalar Fields. Phys. Rev. Lett., 57, 24852488.Google Scholar
Cromartie, H. Thankful, Fonseca, E., Ransom, S. M., et al. 2019. A Very Massive Neutron Star: Relativistic Shapiro Delay Measurements of PSR J0740+6620, Nat. Astron., 4(1), 72.Google Scholar
Damour, Thibault, and Nagar, Alessandro. 2009. Relativistic Tidal Properties of Neutron Stars. Phys. Rev. D, 80, 084035.Google Scholar
Danysz, M., and Pniewski, J. 1953. Delayed Disintegration of a Heavy Nuclear Fragment. Philos. Mag., 44, 348.CrossRefGoogle Scholar
Davidson, K., and Fesen, R. A. 1985. Recent Developments Concerning the Crab Nebula. Ann. Rev. Astron. Astrophys., 23, 119146.Google Scholar
De, Soumi, Finstad, Daniel, Lattimer, James M., et al. 2018. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett., 121(9), 091102.Google Scholar
DeGrand, Thomas A., Jaffe, R. L., Johnson, K., and Kiskis, J. E. 1975. Masses and Other Parameters of the Light Hadrons. Phys. Rev. D, 12, 2060.CrossRefGoogle Scholar
Demorest, Paul, Pennucci, Tim, Ransom, Scott, Roberts, Mallory, and Hessels, Jason. 2010. Shapiro Delay Measurement of a Two Solar Mass Neutron Star. Nature, 467, 10811083.Google Scholar
Derrick, G. H. 1964. Comments on Nonlinear Wave Equations as Models for Elementary Particles. J. Math. Phys., 5, 12521254.Google Scholar
Drischler, C., Carbone, A., Hebeler, K., and Schwenk, A. 2016. Neutron Matter from Chiral Two- and Three-Nucleon Calculations Up to N3 LO. Phys. Rev. C, 94(5), 054307.Google Scholar
Duerr, Hans-Peter. 1956. Relativistic Effects in Nuclear Forces. Phys. Rev., 103, 469480.Google Scholar
Duflo, J., and Zuker, A. P. 1995. Microscopic Mass Formulae. Phys. Rev. C, 52, R23.Google Scholar
Dufour, P., Blouin, S., et al. 2017. The Montreal White Dwarf Database: A Tool for the Community. Page 3 of: Tremblay, P.-E., Gaensicke, B., and Marsh, T. (eds.), 20th European White Dwarf Workshop. Astronomical Society of the Pacific Conference Series, vol. 509. San Francisco: The Astronomical Society of the Pacific.Google Scholar
Dutra, M., Lourenco, O., Avancini, S. S., et al. 2014. Relativistic Mean-Field Hadronic Models under Nuclear Matter Constraints. Phys. Rev. C, 90(5), 055203.Google Scholar
Dutra, M., Lourenco, O., Sa Martins, J. S., et al. 2012. Skyrme Interaction and Nuclear Matter Constraints. Phys. Rev. C, 85, 035201.Google Scholar
Duyvendak, J. J. L. 1942. Further Data Bearing in the Identification of the Crab Nebula with the Supernova of 1054 A. D. Part I. The Ancient Oriental Chronicles. Proc. Astr. Soc. Pac., 54, 91.Google Scholar
Einstein, Albert. 1916a. Die Grundlage der allgemeinen Relativitiätstheorie. Annalen Phys., 49(7), 769822.Google Scholar
Einstein, Albert. 1916b. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1916, 688696.Google Scholar
Einstein, Albert. 1918. Über Gravitationswellen. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1918, 154167.Google Scholar
Elliott, J. B., Lake, P. T., Moretto, L. G., and Phair, L. 2013. Determination of the Coexistence Curve, Critical Temperature, Density, and Pressure of Bulk Nuclear Matter from Fragment Emission Data. Phys. Rev. C, 87(5), 054622.CrossRefGoogle Scholar
Ellis, John R., Giudice, Gian, Mangano, Michelangelo L., Tkachev, Igor, and Wiedemann, Urs. 2008. Review of the Safety of LHC Collisions. J. Phys. G, 35, 115004.Google Scholar
Espinoza, C. M., Lyne, A. G., and Stappers, B. W. 2017. New Long-Term Braking Index Measurements for Glitching Pulsars Using a Glitch-Template Method. Mon. Not. Roy. Astron. Soc., 466(1), 147162.Google Scholar
Espinoza, C. M., Lyne, A. G., Stappers, B. W., and Kramer, M. 2011. A Study of 315 Glitches in the Rotation of 102 Pulsars. Mon. Not. Roy. Astron. Soc., 414, 16791704.Google Scholar
Farhi, E., and Jaffe, R. L. 1984. Strange Quark Matter. Phys. Rev. D, 30, 2379.Google Scholar
Flanagan, Eanna E., and Hinderer, Tanja. 2008. Constraining Neutron Star Tidal Love Numbers with Gravitational Wave Detectors. Phys. Rev. D, 77, 021502.CrossRefGoogle Scholar
Foldy, L. L. 1978. Electrostatic Stability of Wigner and Wigner–Dyson Lattices. Phys. Rev. B, 17, 48894894.Google Scholar
Fonseca, Emmanuel, Stairs, Ingrid H., and Thorsett, Stephen E. 2014. A Comprehensive Study of Relativistic Gravity using PSR B1534+12. Astrophys. J., 787, 82.Google Scholar
Fowler, R. H. 1926. On Dense Matter. Mon. Not. Roy. Astron. Soc., 87, 114122.Google Scholar
Fraga, Eduardo S., Hippert, Maurício, and Schmitt, Andreas. 2019. Surface Tension of Dense Matter at the Chiral Phase Transition. Phys. Rev. D, 99(1), 014046.Google Scholar
Fraga, Eduardo S., Kurkela, Aleksi, and Vuorinen, Aleksi. 2014. Interacting Quark Matter Equation of State for Compact Stars. Astrophys. J. Lett., 781, L25.Google Scholar
Fraga, Eduardo S., Pisarski, Robert D., and Schaffner-Bielich, Jürgen. 2001. Small, Dense Quark Stars from Perturbative QCD. Phys. Rev. D, 63, 121702(R).Google Scholar
Freedman, Barry A., and McLerran, Larry D. 1977. Fermions and Gauge Vector Mesons at Finite Temperature and Density. 3. The Ground State Energy of a Relativistic Quark Gas. Phys. Rev. D, 16, 1169.Google Scholar
Friedberg, R., Lee, T. D., and Pang, Y. 1987. Mini-Soliton Stars. Phys. Rev. D, 35, 3640.Google Scholar
Friedman, B., and Pandharipande, V. R. 1981. Hot and Cold, Nuclear and Neutron Matter. Nucl. Phys. A, 361, 502520.Google Scholar
Furnstahl, R. J., and Serot, Brian D. 2000. Large Lorentz Scalar and Vector Potentials in Nuclei. Nucl. Phys. A, 673, 298310.CrossRefGoogle Scholar
Gal, A., Hungerford, E. V., and Millener, D. J. 2016. Strangeness in Nuclear Physics. Rev. Mod. Phys., 88(3), 035004.Google Scholar
Gerlach, Ulrich H. 1968. Equation of State at Supranuclear Densities and the Existence of a Third Family of Superdense Stars. Phys. Rev., 172, 13251330.Google Scholar
Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009. The Orbit of the Star S2 around SgrA* from VLT and Keck Data. Astrophys. J., 707, L114–L117.Google Scholar
Glendenning, Norman K. 1992. First Order Phase Transitions with More Than One Conserved Charge: Consequences for Neutron Stars. Phys. Rev. D, 46, 12741287.Google Scholar
Glendenning, Norman K. 2000. Compact Stars – Nuclear Physics, Particle Physics, and General Relativity. Second edn. New York: Springer.Google Scholar
Glendenning, Norman K., and Kettner, Christiane. 2000. Non-identical Neutron Star Twins. Astron. Astrophys., 353, L9.Google Scholar
Gold, T. 1968. Rotating Neutron Stars as the Origin of the Pulsating Radio Sources. Nature, 218, 731.Google Scholar
Goldreich, Peter, and Julian, William H. 1969. Pulsar Electrodynamics. Astrophys. J., 157, 869.CrossRefGoogle Scholar
Gorda, Tyler, Kurkela, Aleksi, Romatschke, Paul, Säppi, Matias, and Vuorinen, Aleksi. 2018. Next-to-Next-to-Next-to-Leading Order Pressure of Cold Quark Matter: Leading Logarithm. Phys. Rev. Lett., 121(20), 202701.Google Scholar
Greiner, Carsten, Koch, Peter, and Stöcker, Horst. 1987. Separation of Strangeness from Antistrangeness in the Phase Transition from Quark to Hadron Matter: Possible Formation of Strange Quark Matter in Heavy-Ion Collisions. Phys. Rev. Lett., 58, 1825.Google Scholar
Greiner, Carsten, Rischke, Dirk H., Stöcker, Horst, and Koch, Peter. 1988. The Creation of Strange Quark Matter Droplets as a Unique Signature for Quark-Gluon Plasma Formation in Relativistic Heavy-Ion Collisions. Phys. Rev. D, 38, 2797.Google Scholar
Grill, Fabrizio, Pais, Helena, Providencia, Constanca, Vidaña, Isaac, and Avancini, Sidney S. 2014. Equation of State and Thickness of the Inner Crust of Neutron Stars. Phys. Rev. C, 90, 045803.CrossRefGoogle Scholar
Haensel, P., Zdunik, J. L., and Schaeffer, R. 1986. Strange Quark Stars. Astron. Astrophys., 160, 121.Google Scholar
Hansen, Brad M. S., Brewer, James, Fahlman, Greg G., et al. 2002. The White Dwarf Cooling Sequence of the Globular Cluster Messier 4. Astrophys. J., 574, L155–L158.Google Scholar
Harrison, B. K., Thorne, K. S., Wakano, M., and Wheeler, J. A. 1965. Gravitation Theory and Gravitational Collapse. Chicago: The Unversity of Chicago Press.Google Scholar
Hasenfratz, P., Horgan, R. R., Kuti, J., and Richard, J. M. 1980. The Effects of Colored Glue in the QCD Motivated Bag of Heavy Quark – Anti-quark Systems. Phys. Lett. B, 95, 299305.Google Scholar
Heiselberg, H., Pethick, C. J., and Staubo, E. F. 1993. Quark Matter Droplets in Neutron Stars. Phys. Rev. Lett., 70, 13551359.Google Scholar
Hempel, Matthias, and Schaffner-Bielich, Jürgen. 2008. Mass, Radius, and Composition of the Outer Crust of Nonaccreting Cold Neutron Stars. J. Phys. G, 35, 014043.CrossRefGoogle Scholar
Hessels, Jason W. T., Ransom, Scott M., Stairs, Ingrid H., et al. 2006. A Radio Pulsar Spinning at 716-hz. Science, 311, 19011904.Google Scholar
Hester, J. J., Mori, K., Burrows, D., et al. 2002. Hubble Space Telescope and Chandra Monitoring of the Crab Synchrotron Nebula. Astrophys. J. Lett., 577, L49–L52.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. 1968. Observation of a Rapidly Pulsating Radio Source. Nature, 217, 709.Google Scholar
Hinderer, Tanja. 2008. Tidal Love Numbers of Neutron Stars. Astrophys. J., 677, 1216– 1220. [Erratum: ibid. 697 (2009) 964].Google Scholar
Hinderer, Tanja, Lackey, Benjamin D., Lang, Ryan N., and Read, Jocelyn S. 2010. Tidal Deformability of Neutron Stars with Realistic Equations of State and Their Gravitational Wave Signatures in Binary Inspiral. Phys. Rev. D, 81, 123016.Google Scholar
Hobbs, G., Coles, W., Manchester, R. N., et al. 2012. Development of a Pulsar-Based Time-Scale. Mon. Not. Roy. Astron. Soc., 427, 27802787.Google Scholar
Hornick, Nadine, Tolos, Laura, Zacchi, Andreas, Christian, Jan-Erik, and Schaffner-Bielich, Jürgen. 2018. Relativistic Parameterizations of Neutron Matter and Implications for Neutron Stars. Phys. Rev. C, 98(6), 065804.Google Scholar
Horowitz, C. J., Schneider, A. S., and Berry, D. K. 2010. Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars. Phys. Rev. Lett., 104, 231101.Google Scholar
Huang, W. J., Audi, G., Wang, M., et al. 2017. The AME2016 Atomic Mass Evaluation (I). Evaluation of Input Data; and Adjustment Procedures. Chinese Physics C, 41, 030002.Google Scholar
Hugenholtz, N. M., and van Hove, L. 1958. A Theorem on the Single Particle Energy in a Fermi Gas with Interaction. Physica, 24, 363376.Google Scholar
Iess, L., Jacobson, R. A., Ducci, M., et al. 2012. The Tides of Titan. Science, 337, 457.Google Scholar
Itoh, N. 1970. Hydrostatic Equilibrium of Hypothetical Quark Stars. Prog. Theor. Phys., 44, 291.Google Scholar
Ivanenko, D. D., and Kurdgelaidze, D. F. 1965. Hypothesis Concerning Quark Stars. Astrophys., 1, 251.Google Scholar
Kämpfer, Burkhard. 1981a. On the Possibility of Stable Quark and Pion Condensed Stars. J.Phys. A, 14, L471–L475.Google Scholar
Kämpfer, Burkhard. 1981b. On Stabilizing Effects of Relativity in Cold Spheric Stars with a Phase Transition in the Interior. Phys. Lett. B, 101, 366368.Google Scholar
Kaup, David J. 1968. Klein–Gordon Geon. Phys. Rev., 172, 13311342.Google Scholar
Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2006. Tests of General Relativity from Timing the Double Pulsar. Science, 314, 97102.Google Scholar
Kramer, M., and Wex, N. 2009. The Double Pulsar System: A Unique Laboratory for Gravity. Class. Quant. Grav., 26, 073001.CrossRefGoogle Scholar
Krüger, T., Tews, I., Hebeler, K., and Schwenk, A. 2013. Neutron Matter from Chiral Effective Field Theory Interactions. Phys. Rev. C, 88, 025802.Google Scholar
Kurkela, Aleksi, Fraga, Eduardo S., Schaffner-Bielich, Jürgen, and Vuorinen, Aleksi. 2014. Constraining Neutron Star Matter with Quantum Chromodynamics. Astrophys. J., 789, 127.Google Scholar
Lainey, V. 2016. Quantification of Tidal Parameters from Solar System Data. Celest. Mech. Dyn. Astron., 126, 145156.Google Scholar
Landau, Lev D. 1932. On the Theory of Stars. Physik. Zeits. Sowjetunion, 1, 285.Google Scholar
Large, M. I., Vaughan, A. E., and Mills, B. Y. 1968. A Pulsar Supernova Association? Nature, 220, 340341.CrossRefGoogle Scholar
Lattimer, James M., and Prakash, Madappa. 2005. The Ultimate Energy Density of Observable Cold Matter. Phys. Rev. Lett., 94, 111101.Google Scholar
Lattimer, James M., and Prakash, Madappa. 2011. What a Two Solar Mass Neutron Star Really Means. Pages 275–304 of: Lee, Sabine (ed.), From Nuclei to Stars: Festschrift in Honor of Gerald E Brown. Singapore: World Scientific.Google Scholar
Lighthill, M. J. 1950. On the Instability of Small Planetary Cores (II). Mon. Not. Roy. Astron. Soc., 110, 339.Google Scholar
Lindblom, L. 1984. Limits on the Gravitational Redshift from Neutron Stars. Astrophys. J., 278, 364368.Google Scholar
Lee, Lindblom. 2018. Causal Representations of Neutron-Star Equations of State. Phys. Rev. D, 97(12), 123019.Google Scholar
Lorimer, D. R. 2011. Blind Surveys for Radio Pulsars and Transients. AIP Conf. Proc., 1357, 1118.Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., and Crawford, F. 2007. A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318, 777.Google Scholar
Love, A. E. H. 1909. The Yielding of the Earth to Disturbing Forces. Proc. R. Soc. Lond. A, 82, 7388.Google Scholar
Lyne, A. G., Burgay, M., Kramer, M., et al. 2004. A Double-Pulsar System – A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science, 303, 11531157.Google Scholar
Lyne, Andrew, Jordan, Christine, Graham-Smith, Francis, Espinoza, Cristobal, Stappers, Ben, and Weltrvrede, Patrick. 2015. 45 Years of Rotation of the Crab Pulsar. Mon. Not. Roy. Astron. Soc., 446, 857864.Google Scholar
Maggiore, Michele. 2007. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master Series in Physics. Oxford: Oxford University Press.Google Scholar
Maggiore, Michele. 2018. Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford: Oxford University Press.Google Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., and Hobbs, M. 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J., 129, 1993.Google Scholar
Martinez, J. G., Stovall, K., Freire, P. C. C., et al. 2015. Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry. Astrophys. J., 812(2), 143.Google Scholar
Mason, B. D., Hartkopf, W. I., and Miles, K. N. 2017. Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC. Astron. J., 154, 200.Google Scholar
Mayall, N. U., and Oort, J. H. 1942. Further Data Bearing in the Identification of the Crab Nebula with the Supernova of 1054 A. D. Part II. The Astronomical Aspects. Proc. Astr. Soc. Pac., 54, 95.Google Scholar
Millener, D. J., Dover, C. B., and Gal, A. 1988. Lambda Nucleus Single Particle Potentials. Phys. Rev. C, 38, 2700.Google Scholar
Miller, M. C. et al. 2019. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. 887, L24Google Scholar
Möller, P., Sierk, A. J., Ichikawa, T., and Sagawa, H. 2016. Nuclear Ground-State Masses and Deformations: FRDM(2012). Atom. Data Nucl. Data Tabl., 109–110, 1204.Google Scholar
Möller, Peter, Myers, William D., Sagawa, Hiroyuki, and Yoshida, Satoshi. 2012. New Finite-Range Droplet Mass Model and Equation-of-State Parameters. Phys. Rev. Lett., 108(5), 052501.Google Scholar
Most, Elias R., Weih, Lukas R., Rezzolla, Luciano, and Schaffner-Bielich, Jürgen. 2018. New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. Phys. Rev. Lett., 120(26), 261103.Google Scholar
Narain, Gaurav, Schaffner-Bielich, Jürgen, and Mishustin, Igor N. 2006. Compact Stars Made of Fermionic Dark Matter. Phys. Rev. D, 74, 063003.Google Scholar
Negele, J. W., and Vautherin, D. 1973. Neutron Star Matter at Subnuclear Densities. Nucl. Phys. A, 207, 298320.Google Scholar
Okamoto, Minoru, Maruyama, Toshiki, Yabana, Kazuhiro, and Tatsumi, Toshitaka. 2012. Three Dimensional Structure of Low-Density Nuclear Matter. Phys. Lett. B, 713, 284288.Google Scholar
Oppenheimer, J. R., and Volkoff, G. M. 1939. On Massive Neutron Cores. Phys. Rev., 55, 374381.Google Scholar
Özel, F., and Freire, P. 2016. Masses, Radii, and the Equation of State of Neutron Stars. Annu. Rev. Astron. Astrophys., 54, 401440.Google Scholar
Özel, Feryal, Baym, Gordon, and Guver, Tolga. 2010. Astrophysical Measurement of the Equation of State of Neutron Star Matter. Phys. Rev. D, 82, 101301.Google Scholar
Özel, Feryal, and Psaltis, Dimitrios. 2009. Reconstructing the Neutron-Star Equation of State from Astrophysical Measurements. Phys. Rev. D, 80, 103003.Google Scholar
Pacini, F. 1967. Energy Emission from a Neutron Star. Nature, 216, 567.Google Scholar
Pais, Helena, and Stone, Jirina R. 2012. Exploring the Nuclear Pasta Phase in Core-Collapse Supernova Matter. Phys. Rev. Lett., 109, 151101.Google Scholar
Palhares, Leticia F., and Fraga, Eduardo S. 2010. Droplets in the Cold and Dense Linear Sigma Model with Quarks. Phys. Rev. D, 82, 125018.Google Scholar
Peters, P. C., and Mathews, J. 1963. Gravitational Radiation from Point Masses in a Keplerian Orbit. Phys. Rev., 131, 435439.Google Scholar
Pethick, C. J., Ravenhall, D. G., and Lorenz, C. P. 1995. The Inner Boundary of a Neutron Star Crust. Nucl. Phys. A, 584, 675703.Google Scholar
Pietrzynski, G., Thompson, I. B., Gieren, W., e al. 2010. Accurate Dynamical Mass Determination of a Classical Cepheid in an Eclipsing Binary System. Nature, 468(542).Google Scholar
Postnikov, Sergey, Prakash, Madappa, and Lattimer, James M. 2010. Tidal Love Numbers of Neutron and Self-Bound Quark Stars. Phys. Rev. D, 82, 024016.Google Scholar
Potekhin, Alexander Y., and Chabrier, Gilles. 2000. Equation of State of Fully Ionized Electron – Ion plasmas. 2. Extension to Relativistic Densities and to the Solid Phase. Phys. Rev. E, 62, 85548563.Google Scholar
Provencal, J. L., Shipman, H. L., Koester, D., Wesemael, F., and Bergeron, P. 2002. Procyon B: Outside the Iron Box. Astrophys. J., 568, 324334.Google Scholar
Ramsey, W. H. 1950. On the Instability of Small Planetary Cores (I). Mon. Not. Roy. Astron. Soc., 110, 325.Google Scholar
Ransom, S. M., Stairs, I. H., Archibald, A. M., et al. 2014. A Millisecond Pulsar in a Stellar Triple System. Nature, 505, 520.Google Scholar
Ravenhall, D. G., Pethick, C. J., and Wilson, J. R. 1983. Structure of Matter Below Nuclear Saturation Density. Phys. Rev. Lett., 50, 2066.Google Scholar
Read, Jocelyn S., Lackey, Benjamin D., Owen, Benjamin J., and Friedman, John L. 2009. Constraints on a Phenomenologically Parameterized Neutron-Star Equation of State. Phys. Rev. D, 79, 124032.Google Scholar
Rhoades, C. E., and Ruffini, R. 1974. Maximum Mass of a Neutron Star. Phys. Rev. Lett., 32, 324327.Google Scholar
Riley, T. E. et al. 2019. A NICER View of PSR J0030+451: Millisecond Pulsar Parameter Estimation. Astrophys. J. 887, L21Google Scholar
Rosenfeld, Léon. 1974. Discussion of the Report of D. Pines. Page 174: Astrophysics and Gravitation: Proceedings of the Sixteenth Solvay Conference on Physics. Brusells: Editions de l’Université Bruxelles.Google Scholar
Ruffini, Remo, and Bonazzola, Silvano. 1969. Systems of Selfgravitating Particles in General Relativity and the Concept of an Equation of State. Phys. Rev., 187, 17671783.Google Scholar
Rüster, Stefan B., Hempel, Matthias, and Schaffner-Bielich, Jürgen. 2006. The Outer Crust of Non-accreting Cold Neutron Stars. Phys. Rev. C, 73, 035804.Google Scholar
Sagawa, Hiroyuki, and Möller, Peter. 2017. New Mass Model FRDM 2012 and Symmetry Energy. JPS Conf. Proc., 14, 010804.Google Scholar
Sahu, Kailash C., Anderson, J., Casertano, S., et al. 2017. Relativistic Deflection of Background Starlight Measures the Mass of a Nearby White Dwarf Star. Science, 356(6342), 10461050.Google Scholar
Salpeter, E. E. 1960. Matter at High Densities. Ann. Phys. (N.Y.), 11, 393.Google Scholar
Schaffner-Bielich, J. 2008. Hypernuclear Physics for Neutron Stars. Nucl. Phys. A, 804, 309321.Google Scholar
Schertler, K., Greiner, C., Schaffner-Bielich, J., and Thoma, M. H. 2000. Quark Phases in Neutron Stars and a “Third Family” of Compact Stars as a Signature for Phase Transitions. Nucl. Phys. A, 677, 463.Google Scholar
Schneider, A. S., Berry, D. K., Briggs, C. M., Caplan, M. E., and Horowitz, C. J. 2014. Nuclear “Waffles.” Phys. Rev. C, 90(5), 055805.Google Scholar
Schuetrumpf, B., Klatt, M. A., Iida, K., et al. 2015. Appearance of the Single Gyroid Network Phase in “Nuclear Pasta” Matter. Phys. Rev. C, 91(2), 025801.Google Scholar
Schutz, Bernhard. 2009. A First Course in General Relativity. Cambridge: Cambridge University Press.Google Scholar
Schwarzschild, Karl. 1916a. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. Pages 424–434 of: Sitzungsber. K. Preuss. Akad. Wiss.Google Scholar
Schwarzschild, Karl. 1916b. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Pages 189–196 of: Sitzungsber. K. Preuss. Akad. Wiss.Google Scholar
Schwenk, A., and Pethick, C. J. 2005. Resonant Fermi Gases with a Large Effective Range. Phys. Rev. Lett., 95, 160401.Google Scholar
Sedrakian, Armen, and Clark, John W. 2018. Superfluidity in Nuclear Systems and Neutron Stars Eur. Phys. J., 155(9), 167.Google Scholar
Seidov, Z. F. 1971. The Stability of a Star with a Phase Change in General Relativity Theory. Soviet Astronomy, 15, 347.Google Scholar
Shapiro, Stuart L., and Teukolsky, Saul A. 1983. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. New York: John Wiley & Sons.Google Scholar
Shlomo, S., Kolomietz, V. M., and Colo, G. 2006. Deducing the Nuclear-Matter Incompressibility Coefficient from Data on Isoscalar Modes. European Physical Journal A, 30, 2330.Google Scholar
Siemens, P. J., and Pandharipande, V. R. 1971. Neutron Matter Computations in Bruckner and Variational Theories. Nucl. Phys. A, 173, 561570.Google Scholar
Skyrme, T. 1959. The Effective Nuclear Potential. Nucl. Phys., 9, 615634.Google Scholar
Staelin, D. H., and Reifenstein, III, E. C. 1968. Pulsating Radio Sources Near the Crab Nebula. Science, 162, 14811483.Google Scholar
Steiner, Andrew W., Lattimer, James M., and Brown, Edward F. 2010. The Equation of State from Observed Masses and Radii of Neutron Stars. Astrophys. J., 722, 3354.Google Scholar
Stone, J. R., and Reinhard, P. G. 2007. The Skyrme Interaction in Finite Nuclei and Nuclear Matter. Prog. Part. Nucl. Phys., 58, 587657.Google Scholar
Straumann, Norbert. 2013. General Relativity. Second edn. Dordrecht: Springer.Google Scholar
Tanabashi, M., Nagoya, U., Nagoya, K. M. I., et al. 2018. Review of Particle Physics. Phys. Rev. D, 98(3), 030001.Google Scholar
Tauris, T. M., Kramer, M., Freire, P. C. C., et al. 2017. Formation of Double Neutron Star Systems. Astrophys. J., 846(2), 170.Google Scholar
Taylor, J. H., Fowler, L. A., and McCulloch, P. M. 1979. Measurements of General Relativistic Effects in the Binary Pulsar PSR 1913+16. Nature, 277, 437440.Google Scholar
Tews, I., Margueron, J., and Reddy, S. 2018. Critical Examination of Constraints on the Equation of State of Dense Matter Obtained from GW170817. Phys. Rev. C, 98(4), 045804.Google Scholar
Tews, I., Margueron, J., and Reddy, S. 2019. Confronting Gravitational-Wave Observations with Modern Nuclear Physics Constraints. Eur. Phys. J. A., 55(6), 97.Google Scholar
Tews, Ingo, Lattimer, James M., Ohnishi, Akira, and Kolomeitsev, Evgeni E. 2017. Symmetry Parameter Constraints from a Lower Bound on Neutron-Matter Energy. Astrophys. J., 848(2), 105.Google Scholar
Thorne, Kip S. 1994. Black Holes & Time Warps: Einstein’s Outrageous Legacy. NewYork: W. W. Norton & Company.Google Scholar
Thorsett, S. E., Arzoumanian, Z., Camilo, F., and Lyne, A. G. 1999. The Triple Pulsar System PSR B1620–26 in M4. Astrophys. J., 523, 763.Google Scholar
Tiengo, A., and Mereghetti, S. 2007. XMM-Newton Discovery of 7 s Pulsations in the Isolated Neutron Star RX J1856.5-3754. Astrophys. J. Lett., 657, L101–L104.Google Scholar
Todd-Rutel, B. G., and Piekarewicz, J. 2005. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter. Phys. Rev. Lett., 95, 122501.Google Scholar
Toimela, T. 1985. Perturbative QED and QCD at Finite Temperatures and Densities. Int. J. Theor. Phys., 24, 901. [Erratum: Int. J. Theor. Phys. 26, 1021 (1987)].Google Scholar
Tolman, Richard C. 1934. Relativity, Thermodynamics and Cosmology. Oxford: Oxford University Press.Google Scholar
Tolman, Richard C. 1939. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev., 55, 364373.Google Scholar
Touboul, Pierre, Metris, Gilles, Rodrigues, Manuel, et al. 2017. MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle. Phys. Rev. Lett., 119(23), 231101.Google Scholar
Typel, S., Röpke, G., Klähn, T., Blaschke, D., and Wolter, H. H. 2010. Composition and Thermodynamics of Nuclear Matter with Light Clusters. Phys. Rev. C, 81, 015803.Google Scholar
Wagner, T. A., Schlamminger, S., Gundlach, J. H., and Adelberger, E. G. 2012. Torsion-Balance Tests of the Weak Equivalence Principle. Class. Quant. Grav., 29, 184002.Google Scholar
Walecka, J. D. 1974. A Theory of Highly Condensed Matter. Ann. Phys. (N.Y.), 83, 491.Google Scholar
Walter, F. M., Eisenbeiß, T., Lattimer, J. M., et al. 2010. Revisiting the Parallax of the Isolated Neutron Star RX J185635–3754 Using HST/ACS Imaging. Astrophys. J., 724, 669677.Google Scholar
Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., and Xu, X. 2017. The AME2016 Atomic Mass Evaluation (II). Tables, Graphs and References. Chinese Physics C, 41, 030003.Google Scholar
Weber, Fridolin. 2005. Strange Quark Matter and Compact stars. Prog. Part. Nucl. Phys., 54, 193288.Google Scholar
Weisberg, Joel M., and Huang, Yuping. 2016. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astrophys. J., 829(1), 55.Google Scholar
Weizsäcker, C. F. von. 1935. Zur Theorie der Kernmassen. Zeitschrift f. Physik, 96, 431458.Google Scholar
Wheeler, J. A. 1955. Geons. Phys. Rev., 97, 511536.Google Scholar
Wheeler, J. A., and Ford, K. 1998. Geons, Black Holes, and Quantum Foam: A Life in Physics. New York: W. W. Norton &Company.Google Scholar
Williams, J. G. 1994. Contributions to the Earth’s Obliquity Rate, Precession, and Mutation. Astron. J., 108, 711724.Google Scholar
Witten, Edward. 1984. Cosmic Separation of Phases. Phys. Rev. D, 30, 272.Google Scholar
Wolf, R. N., Beck, D., Blaum, K., et al. 2013. Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide 82Zn. Phys. Rev. Lett., 110(4), 041101.Google Scholar
Wolszczan, A. 1994. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12. Science, 264, 538542.Google Scholar
Wolszczan, A., and Frail, D. A. 1992. A Planetary System around the Millisecond Pulsar PSR1257 + 12. Nature, 355, 145147.Google Scholar
Yakovlev, Dima G., and Pethick, C. J. 2004. Neutron Star Cooling. Ann. Rev. Astron. Astrophys., 42, 169210.Google Scholar
Yakovlev, Dmitry G., Haensel, Pawel, Baym, Gordon, and Pethick, Christopher J. 2013. Lev Landau and the Concept of Neutron Stars. Phys. Usp., 56, 289295. [Usp. Fiz. Nauk, 183, 307 (2013)].Google Scholar
Zel’dovich, Ya. B. 1961. The Equation of State at Ultrahigh Densities and Its Relativistic Limitations. Zh. Eksp. Teoret. Fiz., 41, 1609.Google Scholar
Zürn, G., Wenz, A. N., Murmann, S., et al. 2013. Pairing in Few-Fermion Systems with Attractive Interactions. Physical Review Letters, 111(17), 175302.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×