Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T04:47:00.206Z Has data issue: false hasContentIssue false

15 - Insulin resistance and implications for hippocampal volume/function and the default mode network

from Part II - Underlying biological substrates associated with cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 209 - 228
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbatecola, A. M., Paolisso, G., Lamponi, M., Bandinelli, S., Lauretani, F., Launer, L., & Ferrucci, L. (2004). Insulin resistance and executive dysfunction in older persons. Journal of the American Geriatrics Society, 52(10): 17131718.CrossRefGoogle ScholarPubMed
Adriaanse, M. C., Dekker, J. M., Nijpels, G., Heine, R. J., Snoek, F. J., & Pouwer, F. (2006). Associations between depressive symptoms and insulin resistance: The Hoorn Study. Diabetologia, 49(12): 28742877.Google Scholar
Akomolafe, A., Beiser, A., Meigs, J. B., Au, R., Green, R. C., Farrer, L. A., … Seshadri, S. (2006). Diabetes mellitus and risk of developing Alzheimer disease: Results from the Framingham Study. Archives of Neurology, 63(11): 15511555.CrossRefGoogle ScholarPubMed
Anttila, S. & Leinonen, E. (2001). A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Reviews, 7(3): 239264.CrossRefGoogle ScholarPubMed
Arroyo, C., Hu, F., Ryan, L., Kawachi, I., Colditz, G., Speizer, F., & Manson, J. (2004). Depressive symptoms and risk of type 2 diabetes in women. Diabetes Care, 27(1): 129133.Google Scholar
Awad, N., Gagnon, M., Desrochers, A., Tsiakas, M., & Messier, C. (2002). Impact of peripheral glucoregulation on memory. Behavioral Neuroscience, 116(4): 691702.CrossRefGoogle ScholarPubMed
Awad, N., Gagnon, M., & Messier, C. (2004). The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. Journal of Clinical and Experimental Neuropsychology, 26(8): 10441080.Google Scholar
Banki, C. M., Karmacsi, L., Bissette, G., & Nemeroff, C. B. (1992). CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 2(2): 107113.CrossRefGoogle ScholarPubMed
Benedict, C., Hallschmid, M., Hatke, A., Schultes, B., Fehm, H., Born, J., & Kern, W. (2004). Intranasal insulin improves memory in humans. Psychoneuroendocrinology, 29(10): 13261334.Google Scholar
Benkert, O., Szegedi, A., & Kohnen, R. (2000). Mirtazapine compared with paroxetine in major depression. Journal of Clinical Psychiatry, 61(9): 656663.Google Scholar
Bot, M., Pouwer, F., De Jonge, P., Nolan, J. J., Mari, A., Hojlund, K., … Dekker, J. M. (2013). Depressive symptoms, insulin sensitivity and insulin secretion in the RISC cohort study. Diabetes & Metabolism, 39(1): 4249.Google Scholar
Boyer, W. & Feighner, J. (1992). An overview of paroxetine. Journal of Clinical Psychiatry, 53(Suppl.): 36.Google Scholar
Brown, L., Majumdar, S., Newman, S., & Johnson, J. (2005). History of depression increases risk of type 2 diabetes in younger adults. Diabetes Care, 28(5): 10631067.CrossRefGoogle ScholarPubMed
Bruehl, H., Sweat, V., Hassenstab, J., Polyakov, V., & Convit, A. (2010). Cognitive impairment in nondiabetic middle-aged and older adults is associated with insulin resistance. Journal of Clinical and Experimental Neuropsychology, 32(5): 487493.Google Scholar
Carnethon, M., Kinder, L., Fair, J., Stafford, R., & Fortmann, S. (2003). Symptoms of depression as a risk factor for incident diabetes: findings from the National Health and Nutrition Examination Epidemiologic Follow-up Study, 1971–1992. American Journal of Epidemiology, 158(5): 416423.Google Scholar
Casper, R., Davis, J., Pandey, G., Garver, D., & Dekirmenjian, H. (1977). Neuroendocrine and amine studies in affective illness. Psychoneuroendocrinology, 2(2): 105113.Google Scholar
Centers for Disease Control and Prevention (2011). National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.Google Scholar
Cheng, B. & Mattson, M. (1992). IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. Journal of Neuroscience, 12(4): 15581566.Google Scholar
Chiba, M., Suzuki, S., Hinokio, Y., Hirai, M., Satoh, Y., Tashiro, A., … Toyota, T. (2000). Tyrosine hydroxylase gene microsatellite polymorphism associated with insulin resistance in depressive disorder. Metabolism, 49(9): 11451149.Google Scholar
Clarke, D., Boyd, F., Kappy, M., & Raizada, M. (1984). Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. Journal of Biological Chemistry, 259: 1167211675.Google Scholar
Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100(4): 20192022.Google Scholar
Craft, S. (2005). Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiology of Aging, 26(Suppl. 1): 6569.Google Scholar
Craft, S.S. (2006). Insulin resistance syndrome and Alzheimer disease: Pathophysiologic mechanisms and therapeutic implications. Alzheimer Disease and Associated Disorders, 20(4): 298301.Google Scholar
Craft, S.S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66(3): 300305.Google Scholar
Craft, S., Asthana, S., Cook, D., Baker, L., Cherrier, M., Purganan, K., … Krohn, A. J. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28(6): 809822.Google Scholar
Craft, S., Asthana, S., Schellenberg, G., Baker, L., Cherrier, M., Boyt, A., … Plymate, S. (2000). Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Annals of the New York Academy of Sciences, 903: 222228.CrossRefGoogle ScholarPubMed
Craft, S., Asthana, S., Schellenberg, G., Cherrier, M., Baker, L., Newcomer, J., … Grimwood, K. (1999). Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender. Neuroendocrinology, 70(2): 146152.Google Scholar
Craft, S. & Watson, G. (2004). Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurology, 3(3): 169178.Google Scholar
Curb, J. D., Rodriguez, B. L., Abbott, R. D., Petrovitch, H., Ross, G. W., Masaki, K. H., … White, L. R. (1999). Longitudinal association of vascular and Alzheimer’s dementias, diabetes, and glucose tolerance. Neurology, 52(5): 971975.Google Scholar
Davis, S., Colburn, C., Dobbins, R., Nadeau, S., Neal, D., & Williams, P. (1995). Evidence that the brain of the conscious dog is insulin sensitive. Journal of Clinical Investigation, 95(2): 593602.Google Scholar
de Leon, M., Desanti, S., Zinkowski, R., Mehta, P., Pratico, D., Segal, S., … Rusinek, H. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256(3): 205223.CrossRefGoogle ScholarPubMed
Delaunay, F., Khan, A., Cintra, A., Davani, B., Ling, Z. C., Andersson, A., … Okret, S. (1997). Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. Journal of Clinical Investigation, 100(8): 20942098.Google Scholar
den Heijer, T., Vermeer, S., van Dijk, E., Prins, N., Koudstaal, P., Hofman, A., & Breteler, M. M. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia, 46(12): 16041610.Google Scholar
Dringen, R. & Hamphrecht, B. (1992). Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of atroglia-rich primary cultures. Journal of Neurochemistry, 58(2): 511517.CrossRefGoogle ScholarPubMed
Dunaif, A., Segal, K., Futterweit, W., & Dobrjansky, A. (1989). Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes, 38(9): 11651174.CrossRefGoogle ScholarPubMed
Eaton, W., Armenian, H., Gallo, J., Pratt, L., & Ford, D. (1996). Depression and risk for onset of type II diabetes: A prospective population-based study. Diabetes Care 19(10): 10971102.Google Scholar
Enzinger, C., Fazekas, F., Matthews, P., Ropele, S., Schmidt, H., Smith, S., … Schmidt, R. (2005). Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology, 64(10): 17041711.Google Scholar
Everson-Rose, S., Meyer, P., Powell, L., Pandey, D., Torrens, J., Kravitz, H., … Matthews, K. A. (2004). Depressive symptoms, insulin resistance, and risk of diabetes in women at midlife. Diabetes Care, 27(12): 28562862.CrossRefGoogle ScholarPubMed
Facchini, F., Hua, N., Abbasi, F., & Reaven, G. (2001). Insulin resistance as a predictor of age-related diseases. Journal of Clinical Endocrinology & Metabolism, 86(8): 35743578.Google Scholar
Farin, H., Abbasi, F., & Reaven, G. (2005). Body mass index and waist circumference correlate to the same degree with insulin-mediated glucose uptake. Metabolism, 54(10): 13231328.Google Scholar
Farin, H., Abbasi, F., & Reaven, G. (2006). Body mass index and waist circumference both contribute to differences in insulin-mediated glucose disposal in nondiabetic adults. American Journal of Clinical Nutrition, 83(1): 4751.Google Scholar
Fava, M. (2000). Weight gain and antidepressants. Journal of Clinical Psychiatry, 61(Suppl. 11): 3741.Google Scholar
Flood, J., Mooradian, A., & Morley, J. (1990). Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes, 39(11): 13911398.Google Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27): 96739678.Google Scholar
Freeman, H. (1946). Resistance to insulin in mentally disturbed soldiers. Archives of Neural Psychiatry, 56(1): 7478.Google Scholar
Gerich, J. (2003). Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. Mayo Clinic Proceedings, 78(4): 447456.Google Scholar
Geroldi, C., Frisoni, G. B., Paolisso, G., Bandinelli, S., Lamponi, M., & Abbatecola, A. M. (2005). Insulin resistance in cognitive impairment: The InCHIANTI study. Archives of Neurology, 62(7): 10671072.Google Scholar
Gerozissis, K. (2003). Brain insulin: Regulation, mechanisms of action and functions. Cellular and Molecular Neurobiology, 23(1): 125.Google Scholar
Gispen, W. & Biessels, G. (2000). Cognition and synaptic plasticity in diabetes mellitus. Trends in Neurosciences, 23(11): 542549.Google Scholar
Golden, S., Williams, J., Ford, D., Yeh, H., Paton Sanford, C., Nieto, F., … Atherosclerosis Risk in Communities study (2004). Depressive symptoms and the risk of type 2 diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care, 27(2): 429435.Google Scholar
Goodnick, P. (2001). Use of antidepressants in treatment of comorbid diabetes mellitus and depression as well as in diabetic neuropathy. Annals of Clinical Psychiatry, 13(1): 3141.Google Scholar
Green, R., Cupples, L., Kurz, A., Auerbach, S., Go, R., Sadovnick, D., … Farrer, L. (2003). Depression as a risk factor for Alzheimer disease: The MIRAGE Study. Archives of Neurology, 60(5): 753759.CrossRefGoogle ScholarPubMed
Greicius, M., Srivastava, G., Reiss, A., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13): 46374642.Google Scholar
Hampel, H., Burger, K., Teipel, S. J., Bokde, A. L., Zetterberg, H., & Blennow, K. (2008). Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s & Dementia: Journal of the Alzheimer’s Association, 4(1): 3848.Google Scholar
Hempel, R., Onopa, R., & Convit, A. (2012). Type 2 diabetes affects hippocampus volume differentially in men and women. Diabetes/Metabolism Research and Reviews, 28(1): 7683.Google Scholar
Hill, J., Lesniak, M., Pert, C., & Roth, J. (1986). Autoradiographic localization of insulin receptors in rat brain: Prominence in olfactory and limbic areas. Neuroscience, 17(4): 11271138.Google Scholar
Horacek, J., Kuzmiakova, M., Hoschl, C., Andel, M., & Bahbonh, R. (1999). The relationship between central serotonergic activity and insulin sensitivity in healthy volunteers. Psychoneuroendocrinology, 24(8): 785797.Google Scholar
Izumi, Y., Yamada, K., Matsukawa, M., & Zorumski, C. (2003). Effects of insulin on long-term potentiation in hippocampal slices from diabetic rats. Diabetologia, 46(7): 10071012.Google Scholar
Kalmijn, S., Feskens, E., Launer, L., Stijnen, T., & Kromhout, D. (1995). Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men. Diabetologia, 38(9): 10961102.Google Scholar
Kanaya, A. M., Barrett-Connor, E., Gildengorin, G., & Yaffe, K. (2004). Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Archives of Internal Medicine, 164(12): 13271333.Google Scholar
Kawakami, N., Takatsuka, N., Shimizu, H., & Ishibashi, H. (1999). Depressive symptoms and occurrence of type 2 diabetes among Japanese men. Diabetes Care, 22(7): 10711076.Google Scholar
Kenna, H., Hoeft, F., Kelley, R., Wroolie, T., DeMuth, B., Reiss, A., & Rasgon, N. (2013). Fasting plasma insulin and the default mode network in women at risk for Alzheimer’s disease. Neurobiology of Aging, 34(3): 641649.Google Scholar
Kern, W., Peters, A., Fruehwald-Schultes, B., Deininger, E., Born, J., & Fehm, H. (2001). Improving influence of insulin on cognitive functions in humans. Neuroendocrinology, 74(4): 270280.Google Scholar
Kerr, D., Stanley, J., Barron, M., Thomas, R., Leatherdale, B., & Pickard, J. (1993). Symmetry of cerebral blood flow and cognitive responses to hypoglycemia in humans. Diabetologia, 36(1): 7378.Google Scholar
Kessing, L., Nilsson, F., Siersma, V., & Andersen, P. (2004). Increased risk of developing diabetes in depressive and bipolar disorders? Journal of Psychiatric Research, 38(4): 395402.Google Scholar
Kivipelto, M., Ngandu, T., Fratiglioni, L., Viitanen, M., Kareholt, I., Winblad, B., … Nissinen, A. (2005). Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Archives of Neurology 62(10): 15561560.Google Scholar
Kopf, D., Westphal, S., Luley, C., Ritter, S., Gilles, M., Weber-Hamann, B., … Deuschle, M. (2004). Lipid metabolism and insulin resistance in depressed patients: significance of weight, hypercortisolism, and antidepressant treatment. Journal of Clinical Psychopharmacology, 24(5): 527531.Google Scholar
Kopf, S. & Baratti, C. (1995). The impairment of retention induced by insulin in mice may be mediated by a reduction in central cholinergic activity. Neurobiology of Learning and Memory, 63(3): 220228.Google Scholar
Kopf, S. & Baratti, C. (1996). Memory modulation by post-training glucose or insulin remains evident at long retention intervals. Neurobiology of Learning and Memory, 65(2): 189191.Google Scholar
Kumar, R., Anstey, K. J., Cherbuin, N., Wen, W., & Sachdev, P. S. (2008). Association of type 2 diabetes with depression, brain atrophy, and reduced fine motor speed in a 60- to 64-year-old community sample. American Journal of Geriatric Psychiatry, 16(12): 989998.CrossRefGoogle Scholar
Kumari, M., Head, J., & Marmot, M. (2004). Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall II study. Archives of Internal Medicine, 164(17): 18731880.Google Scholar
Kuusisto, J., Koivisto, K., Mykkanen, L., Helkala, E., Vanhanen, M., Hänninen, T., … Laakso, M. (1997). Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. British Medical Journal, 315(7115): 10451049.Google Scholar
Kyriaki, G. (2003). Brain insulin: Regulation, mechanisms of action and functions. Cellular and Molecular Neurobiology, 23(1): 125.Google Scholar
Lannert, H. & Hoyer, S. (1998). Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral Neuroscience, 112(5): 11991208.Google Scholar
Luchsinger, J. A. (2010). Diabetes, related conditions, and dementia. Journal of the Neurological Sciences, 299(1–2): 3538.Google Scholar
Luchsinger, J. A., Tang, M., Shea, S., & Mayeux, R. (2004). Hyperinsulinemia and risk of Alzheimer disease. Neurology, 63(7): 11871992.CrossRefGoogle ScholarPubMed
Ma, Y., Balasubramanian, R., Pagoto, S. L., Schneider, K. L., Hebert, J. R., Phillips, L. S., … Liu, S. (2013). Relations of depressive symptoms and antidepressant use to body mass index and selected biomarkers for diabetes and cardiovascular disease. American Journal of Public Health, 103(8): e34e43.Google Scholar
Matthews, D., Hosker, J., Rudenski, A., Naylor, B., Treacher, D., & Turner, R. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7): 412419.Google Scholar
McCowan, P. & Quastel, J. (1931). Blood sugar studies in abnormal mental states. British Journal of Psychiatry, 77(318): 525548.Google Scholar
McIntyre, R. S., Rasgon, N. L., Kemp, D. E., Nguyen, H. T., Law, C. W., Taylor, V. H., … Goldstein, B. I. (2009). Metabolic syndrome and major depressive disorder: co-occurrence and pathophysiologic overlap. Current Diabetes Reports, 9(1): 5159.Google Scholar
McLaughlin, T., Allison, G., Abbasi, F., Lamendola, C., & Reaven, G. (2004). Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism, 53(4): 495499.Google Scholar
Mellitus ECotDaCoD (2003). Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26(Suppl. 1): S5S20.Google Scholar
Menna-Perper, M., Rochford, J., Mueller, P., Swartzburg, M., Jekelis, A., & Manowitz, P. (1984). Differential response of plasma glucose, amino acids and nonesterified fatty acids to insulin in depressed patients. Psychoneuroendocrinology, 9(2): 161171.Google Scholar
Messier, C. (2003). Diabetes, Alzheimer’s disease and apolipoprotein genotype. Experimental Gerontology, 38(9): 941946.Google Scholar
Mueller, P., Heninger, G., & McDonald, R. (1969a). Insulin tolerance test in depression. Archives of General Psychiatry, 21: 587594.Google Scholar
Mueller, P., Heninger, G., & McDonald, R. (1969b). Intravenous glucose tolerance test in depression. Archives of General Psychiatry, 21: 470477.Google Scholar
Muldoon, M., Mackey, R., Korytkowski, M., Flory, J., Pollock, B., & Manuck, S. (2006). The metabolic syndrome is associated with reduced central serotonergic responsivitity in healthy community volunteers. Journal of Clinical Endocrinology & Metabolism, 91(2): 718721.Google Scholar
Muldoon, M., Mackey, R., Williams, K., Korytkowski, M., Flory, J., & Manuck, S. (2004). Low central nervous system serotonergic responsivity is associated with the metabolic syndrome and physical inactivity. Journal of Clinical Endocrinology & Metabolism, 89(1): 266271.Google Scholar
Musen, G., Jacobson, A. M., Bolo, N. R., Simonson, D. C., Shenton, M. E., McCartney, R. L., … Hoogenboom, W. S. (2012). Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes, 61(9): 23752379.Google Scholar
Musselman, D. L., Betan, E., Larsen, H., & Phillips, L. S. (2003). Relationship of depression to diabetes types 1 and 2: Epidemiology, biology, and treatment. Biological Psychiatry, 54(3): 317329.Google Scholar
Nathan, R., Sachar, E., Asnis, G., Halbreich, U., & Halpern, F. (1981). Relative insulin insensitivity and cortisol secretion in depressed patients. Psychiatry Research, 4(3): 291300.Google Scholar
Neumann, K. F., Rojo, L., Navarrete, L. P., Farias, G., Reyes, P., & Maccioni, R. B. (2008). Insulin resistance and Alzheimer’s disease: Molecular links & clinical implications. Current Alzheimer Research, 5(5): 438447.Google Scholar
Nichols, G. & Brown, J. (2003). Unadjusted and adjusted prevalence of diagnosed depression in type 2 diabetes. Diabetes Care, 26(3): 744749.Google Scholar
Okamura, F., Tashiro, A., Utumi, A., Imai, T., Suchi, T., Tamura, D., … Hongo, M. (2000). Insulin resistance in patients with depression and its changes during the clinical course of depression: minimal model analysis. Metabolism, 49(10): 12551260.Google Scholar
Ott, A., Stolk, R. P., Hofman, A., van Harskamp, F., Grobbee, D. E., & Breteler, M. M. (1996). Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia, 39(11): 13921397.CrossRefGoogle ScholarPubMed
Palinkas, L., Lee, P., & Barrett-Connor, E. (2004). A prospective study of Type 2 diabetes and depressive symptoms in the elderly: The Rancho Bernardo Study. Diabetic Medicine, 21(11): 11851191.Google Scholar
Pan, A., Ye, X., Franco, O. H., Li, H., Yu, Z., Zou, S., … Lin, X. (2008). Insulin resistance and depressive symptoms in middle-aged and elderly Chinese: Findings from the Nutrition and Health of Aging Population in China Study. Journal of Affective Disorders, 109(1–2): 7582.Google Scholar
Pariante, C. M. & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31(9): 464468.Google Scholar
Park, C. (2001). Cognitive effects of insulin in the central nervous system. Neuroscience and Biobehavioral Reviews, 25(4): 311323.Google Scholar
Park, C., Seeley, R., Craft, S., & Woods, S. (2000). Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiology & Behavior 68(4): 509514.CrossRefGoogle Scholar
Pearson, S., Schmidt, M., Patton, G., Dwyer, T., Blizzard, L., Otahal, P., & Venn, A. (2010). Depression and insulin resistance: Cross-sectional associations in young adults. Diabetes Care, 33(5): 11281133.Google Scholar
Pestell, R., Crock, P., & Ward, G. (1989). Fenfluramine increases insulin action in patients with NIDDM. Diabetes Care, 12(4): 252258.Google Scholar
Porte, D. Jr. & Woods, S. C. (1981). Regulation of food intake and body weight in insulin. Diabetologia, 20(Suppl.): 274280.Google Scholar
Potter Van Loon, B., Radder, J., Krans, H., Zwinderman, A., & Meinders, A. (1991). Fluoxetine increases insulin action in obese nondiabetic and obese non-insulin-dependent diabetic individuals. International Journal of Obesity and Related Metabolic Disorders, 16(2): 7885.Google Scholar
Pryce, I. (1958). Melancholia, glucose tolerance, and bodyweight. Journal of Mental Science, 104(435): 421427.Google Scholar
Ramasubbu, R. (2002). Insulin resistance: A metabolic link between depressive disorder and atherosclerotic vascular diseases. Medical Hypotheses, 59(5): 537551.Google Scholar
Rasgon, N., Altshuler, L., Fairbanks, L., Elman, S., Bitran, J., Labarca, R., … Mintz, J. (2005). Reproductive function and risk for PCOS in women treated for bipolar disorder. Bipolar Disorders, 7(3): 246259.Google Scholar
Rasgon, N. & Jarvik, L. (2004). Insulin resistance, affective disorders, and Alzheimer’s disease: Review and hypothesis. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 59(2): 178183.Google Scholar
Rasgon, N. L., Carter, M. S., Elman, S., Bauer, M., Love, M., & Korenman, S. G. (2002). Common treatment of polycystic ovarian syndrome and major depressive disorder: Case report and review. Current Drug Targets: Immune Endocrine & Metabolic Disorders, 2(1): 97102.Google Scholar
Rasgon, N. L., Kenna, H. A., Wroolie, T. E., Kelley, R., Silverman, D., Brooks, J., … Reiss, A. (2011). Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiology of Aging, 32(11): 19421948.Google Scholar
Rasgon, N. L., Kenna, H. A., Wroolie, T. E., Williams, K. E., DeMuth, B. N., & Silverman, D. H. (2014). Insulin resistance and medial prefrontal gyrus metabolism in women receiving hormone therapy. Psychiatry Research, 223(1): 2836.Google Scholar
Rasgon, N. L., Rao, R. C., Hwang, S., Altshuler, L. L., Elman, S., Zuckerbrow-Miller, J., & Korenman, S. G. (2003). Depression in women with polycystic ovary syndrome: clinical and biochemical correlates. Journal of Affective Disorders, 74(3): 299304.Google Scholar
Reaven, G. (1988). Banting Lecture 1988: Role of insulin resistance in human disease. Diabetes, 37(12): 15951607.CrossRefGoogle ScholarPubMed
Reaven, G.G. (1992). Syndrome X. Blood Pressure Supplement, 4: 1316.Google Scholar
Reaven, G.G. (1993). Role of insulin resistance in human disease. Annual Review of Medicine, 44: 121131.Google Scholar
Reaven, G.G. (2005). All obese individuals are not created equal: Insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diabetes & Vascular Disease Research, 2(3): 105112.Google Scholar
Roos, C., Lidfeldt, J., Agardh, C. D., Nyberg, P., Nerbrand, C., Samsioe, G., & Westrin, A. (2007). Insulin resistance and self-rated symptoms of depression in Swedish women with risk factors for diabetes: the Women’s Health in the Lund Area study. Metabolism, 56(6): 825829.Google Scholar
Rosmond, R., Bouchard, C., & Bjorntorp, P. (2002). Increased abdominal obesity in subjects with a mutation in the 5-HT(2A) receptor gene promoter. Annals of the New York Academy of Sciences, 967: 571575.Google Scholar
Sachar, E., Finkelstein, J., & Hellman, L. (1971). Growth hormone responses in depressive illness. Archives of General Psychiatry, 25(3): 263269.Google Scholar
Santucci, A., Schroeder, H., & Riccio, D. (1990). Homeostatic disruption and memory: Effect of insulin administration in rats. Behavioral and Neural Biology, 53(3): 321333.Google Scholar
Scheen, A., Paolisso, G., Salvatore, T., & Lefèbvre, P. J. (1991). Improvement of insulin-induced glucose disposal in obese patients with NIDDM after 1-week treatment with D-fenfluramine. Diabetes Care, 14(4): 325332.Google Scholar
Schulingkamp, R., Pagano, T., Hung, D., & Raffa, R. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neuroscience and Biobehavioral Reviews, 24(8): 855872.Google Scholar
Schuur, M., Henneman, P., van Swieten, J. C., Zillikens, M. C., de Koning, I., Janssens, A. C., … Van Duijn, C. M. (2010). Insulin-resistance and metabolic syndrome are related to executive function in women in a large family-based study. European Journal of Epidemiology, 25(8): 561568.Google Scholar
Schwarzberg, H., Bernstein, H., Reiser, M., & Gunther, O. (1989). Intracerebroventricular administration of insulin attenuates retrieval of a passive avoidance response in rats. Neuropeptides, 13(2): 7981.Google Scholar
Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., … Wohlschläger, A. M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47): 1876018765.Google Scholar
Spaner, D., Bland, R., & Newman, S. (1994). Epidemiology of psychiatric disorders in Edmonton: major depressive disorder. Acta Psychiatrica Scandinavica Supplement,376: 715.Google Scholar
Stolk, R., Breteler, M., Ott, A., Pols, H., Lamberts, S., Grobbee, D., & Hofman, A. (1997). Insulin and cognitive function in an elderly population: The Rotterdam Study. Diabetes Care, 20(5): 792795.CrossRefGoogle Scholar
Timonen, M., Laakso, M., Jokelainen, J., Rajala, U., Meyer-Rochow, V., & Keinanen-Kiukaanniemi, S. (2005). Insulin resistance and depression: Cross sectional study. British Medical Journal, 330(7481): 1718.Google Scholar
Timonen, M., Salmenkaita, I., Jokelainen, J., Laakso, M., Harkonen, P., Koskela, P., … Keinänen-Kiukaanniemi, S. (2007). Insulin resistance and depressive symptoms in young adult males: Findings from Finnish military conscripts. Psychosomatic Medicine, 69(8): 723728.Google Scholar
Unger, E., Kjellen, L., & Eriksson, U. J. (1991). Effect of insulin on the altered production of proteoglycans in rib cartilage of experimentally diabetic rats. Archives of Biochemistry and Biophysics, 285(2): 205210.Google Scholar
Valastro, B., Cossette, J., Lavoie, N., Gagnon, S., Trudeau, F., & Massicotte, G. (2002). Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus. Diabetologia, 45(5): 642650.Google Scholar
Van den Akker, M., Schuurman, A., Metsemakers, J., & Buntinx, F. (2004). Is depression related to subsequent diabetes mellitus? Acta Psychiatrica Scandinavica, 110(3): 178183.Google Scholar
Vanhanen, M., Koivisto, K., Karjalainen, L., Helkala, E. L., Laakso, M., & Soininen, H. (1997). Risk for non-insulin-dependent diabetes in the normoglycaemic elderly is associated with impaired cognitive function. Neuroreport, 8(6): 15271530.Google Scholar
Vanhanen, M., Koivisto, K., Kuusisto, J., Mykkanen, L., Helkala, E., Hänninen, T., … Laakso, M. (1998). Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care, 21(3): 398402.Google Scholar
Vrbikova, J., Bendlova, B., Hill, M., Vankova, M., Vondra, K., & Starka, L. (2002). Insulin sensitivity and beta-cell function in women with polycystic ovary syndrome. Diabetes Care, 25(7): 12171222.Google Scholar
Warram, J. H., Martin, B. C., Krolewski, A. S., Soeldner, J. S., & Kahn, C. R. (1990). Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Annals of Internal Medicine, 113(12): 909915.Google Scholar
Watson, G. & Craft, S. (2004). Modulation of memory by insulin and glucose: Neuropsychological observations in Alzheimer’s disease. European Journal of Pharmacology, 490(1–3): 97113.Google Scholar
Weissman, M., Bland, R., Canino, G., Faravelli, C., Greenwald, S., Hwu, H., … Yeh, E.-K. (1996). Cross-national epidemiology of major depression and bipolar disorder. JAMA, 276(4): 293299.Google Scholar
Werner, H., Raizada, M., Mudd, L., Foyt, H. L., Simpson, I., & Roberts, C. T. (1989). Regulation of rat brain/HepG2 glucose transporter gene expression by insulin and insulin-like growth factor-I in primary cultures of neuronal and glial cells. Endocrinology, 125(1): 314320.Google Scholar
Winocur, G., Greenwood, C., Piroli, G., Grillo, C., Reznikov, L., & Reagan, L. (2005). Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behavioral Neuroscience, 119(5): 13891395.Google Scholar
Winokur, A., Maislin, G., Phillips, J., & Amsterdam, J. (1988). Insulin resistance after oral glucose tolerance testing in patients with major depression. American Journal of Psychiatry, 145(3): 325330.Google Scholar
Wright, J., Jacisin, J., Radin, N., & Bell, R. (1978). Glucose metabolism in unipolar depression. British Journal of Psychiatry, 132(386393).Google Scholar
Wroolie, T. E., Kenna, H. A., Singh, M. K., & Rasgon, N. L. (2015). Association between insulin resistance and cognition in patients with depressive disorders: Exploratory analyses into age-specific effects. Journal of Psychiatric Research, 60: 6572.Google Scholar
Yaffe, K. (2007). Metabolic syndrome and cognitive decline. Current Alzheimer Research, 4(2): 123126.Google Scholar
Yaffe, K., Blackwell, T., Kanaya, A., Davidowitz, N., Barrett-Connor, E., & Krueger, K. (2004). Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology, 63(4): 658663.Google Scholar
Yip, J., Facchini, F., & Reaven, G. (1998). Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. Journal of Clinical Endocrinology & Metabolism 83: 27732776.Google Scholar
Young, S. E., Mainous, A. G. III, & Carnemolla, M. (2006). Hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care, 29(12): 26882693.Google Scholar
Yuan, X., Yamada, K., Ishiyama-Shigemoto, S., Koyama, W., & Nonaka, K. (2000). Identification of polymorphic loci in the promoter region of the serotonin 5-HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia, 43(3): 373376.Google Scholar
Zhao, W., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M., & Alkon, D. L. (1999). Brain insulin receptors and spatial memory: Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. Journal of Biological Chemistry, 274(49): 3489334902.Google Scholar
Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y., Rabinovici, G. D., … Seeley, W. W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(Pt 5): 13521367.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×