Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T22:53:16.605Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 December 2015

Timothy C. Burness
Affiliation:
University of Bristol
Michael Giudici
Affiliation:
University of Western Australia, Perth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alspach, B. 1989. Lifting Hamilton cycles of quotient graphs. Discrete Math., 78, 25–36.CrossRefGoogle Scholar
[2] Arvind, V. 2013. The parameterized complexity of fixpoint free elements and bases in permutation groups. Pages 4–15 of: Gutin, G., and Szeider, S. (eds), Parameterized and Exact Computation. Lecture Notes in Computer Science, vol. 8246. Springer, Switzerland.CrossRefGoogle Scholar
[3] Aschbacher, M. 1984. On the maximal subgroups of the finite classical groups. Invent. Math., 76, 469–514.CrossRefGoogle Scholar
[4] Aschbacher, M. 2000. Finite Group Theory (Second edition). Cambridge Studies in Advanced Mathematics, vol. 10. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[5] Aschbacher, M., and Seitz, G. M. 1976. Involutions in Chevalley groups over fields of even order. Nagoya Math. J., 63, 1–91.CrossRefGoogle Scholar
[6] Bamberg, J., Giudici, M., Liebeck, M.W., Praeger, C. E., and Saxl, J. 2013. The classification of almost simple 3/2 -transitive groups. Trans. Am. Math. Soc., 365, 4257–4311.CrossRefGoogle Scholar
[7] Bang, A. S. 1886. Taltheoretiske undersølgelser. Tidskrifft Math., 5, 70–80, 130–137.Google Scholar
[8] Bereczky, Á. 1995. Fixed-point-free p-elements in transitive permutation groups. Bull. London Math. Soc., 27, 447–452.CrossRefGoogle Scholar
[9] Bienert, R., and Klopsch, B. 2010. Automorphism groups of cyclic codes. J. Algebraic Combin., 31, 33–52.CrossRefGoogle Scholar
[10] Biggs, N. 1973. Three remarkable graphs. Can. J. Math., 25, 397–411.CrossRefGoogle Scholar
[11] Bosma, W., Cannon, J., and Playoust, C. 1997. The Magma algebra system I: The user language. J. Symbolic Comput., 24, 235–265.CrossRefGoogle Scholar
[12] Boston, N., Dabrowski, W., Foguel, T., Gies, P. J., Jackson, D. A., Leavitt, J., and Ose, D. T. 1993. The proportion of fixed-point-free elements of a transitive permutation group. Commun. Algebra, 21, 3259–3275.CrossRefGoogle Scholar
[13] Bray, J. N., Holt, D. F., and Roney-Dougal, C.M. 2013. TheMaximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[14] Breuer, T., Guralnick, R. M., and Kantor, W. M. 2008. Probabilistic generation of finite simple groups, II. J. Algebra, 320, 443–494.CrossRefGoogle Scholar
[15] Britnell, J. R., and Maróti, A. 2013. Normal coverings of linear groups. Algebra Number Theory, 7, 2085–2102.CrossRefGoogle Scholar
[16] Bubboloni, D., Praeger, C. E., and Spiga, P. 2013. Normal coverings and pairwise generation of finite alternating and symmetric groups. J. Algebra, 390, 199–215.CrossRefGoogle Scholar
[17] Burness, T. C. 2007a. Fixed point ratios in actions of finite classical groups, I. J. Algebra, 309, 69–79.Google Scholar
[18] Burness, T. C. 2007b. Fixed point ratios in actions of finite classical groups, II. J. Algebra, 309, 80–138.Google Scholar
[19] Burness, T. C. 2007c. Fixed point ratios in actions of finite classical groups, III. J. Algebra, 314, 693–748.Google Scholar
[20] Burness, T. C. 2007d. Fixed point ratios in actions of finite classical groups, IV. J. Algebra, 314, 749–788.Google Scholar
[21] Burness, T. C. 2007e. On base sizes for actions of finite classical groups. J. London Math. Soc., 75, 545–562.CrossRefGoogle Scholar
[22] Burness, T. C., and Giudici, M. On 2'-elusive biquasiprimitive permutation groups. In preparation.
[23] Burness, T. C., Giudici, M., and Wilson, R. A. 2011b. Prime order derangements in primitive permutation groups. J. Algebra, 341, 158–178.CrossRefGoogle Scholar
[24] Burness, T. C., and Guest, S. 2013. On the uniform spread of almost simple linear groups. Nagoya Math. J., 209, 35–109.CrossRefGoogle Scholar
[25] Burness, T. C., Guralnick, R.M., and Saxl, J. 2011a. On base sizes for symmetric groups. Bull. London Math. Soc., 43, 386–391.CrossRefGoogle Scholar
[26] Burness, T. C., Guralnick, R. M., and Saxl, J. 2014. Base sizes for S-actions of finite classical groups. Isr. J. Math., 199, 711–756.Google Scholar
[27] Burness, T. C., Liebeck, M. W., and Shalev, A. 2009. Base sizes for simple groups and a conjecture of Cameron. Proc. London Math. Soc., 98, 116–162.CrossRefGoogle Scholar
[28] Burness, T. C., O'Brien, E. A., and Wilson, R. A. 2010. Base sizes for sporadic simple groups. Isr. J. Math., 177, 307–333.CrossRefGoogle Scholar
[29] Burness, T. C., Praeger, C. E., and Seress, Á. 2012a. Extremely primitive classical groups. J. Pure Appl. Algebra, 216, 1580–1610.CrossRefGoogle Scholar
[30] Burness, T. C., Praeger, C. E., and Seress, Á. 2012b. Extremely primitive sporadic and alternating groups. Bull. London Math. Soc., 44, 1147–1154.CrossRefGoogle Scholar
[31] Burness, T. C., and Tong-Viet, H. P. 2015. Derangements in primitive permutation groups, with an application to character theory. Q. J. Math., 66, 63–96.CrossRefGoogle Scholar
[32] Burness, T. C., and Tong-Viet, H. P. Primitive permutation groups and derangements of prime power order. Manuscripta Math. In press.
[33] Burnside, W. 1911. Theory of Groups of Finite Order (Second edition). Cambridge University Press, Cambridge.Google Scholar
[34] Cameron, P. J. (ed.). 1997. Research problems from the Fifteenth British Combinatorial Conference (Stirling, 1995). Discrete Math., 167/168, 605–615.
[35] Cameron, P. J. 1999. Permutation Groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[36] Cameron, P. J. 2000. Notes on Classical Groups. Unpublished lecture notes, available at www.maths.qmul.ac.uk/~pjc/class_gps/cg.pdf.
[37] Cameron, P. J., and Cohen, A. M. 1992. On the number of fixed point free elements in a permutation group. Discrete Math., 106/107, 135–138.CrossRefGoogle Scholar
[38] Cameron, P. J., Frankl, P., and Kantor, W. M. 1989. Intersecting families of finite sets and fixed-point-free 2-elements. Eur. J. Combin., 10, 149–160.CrossRefGoogle Scholar
[39] Cameron, P. J., Giudici, M., Jones, G. A., Kantor, W. M., Klin, M. H., Marušič, D., and Nowitz, L. A. 2002. Transitive permutation groups without semiregular subgroups. J. London Math. Soc., 66, 325–333.CrossRefGoogle Scholar
[40] Carter, R. W. 1989. Simple Groups of Lie Type. Wiley Classics Library. John Wiley & Sons, New York.Google Scholar
[41] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., and Wilson, R. A. 1985. Atlas of Finite Groups. Oxford University Press, Eynsham.Google Scholar
[42] Crestani, E., and Lucchini, A. 2012. Normal coverings of solvable groups. Arch. Math. (Basel), 98, 13–18.CrossRefGoogle Scholar
[43] Crestani, E., and Spiga, P. 2010. Fixed-point-free elements in p-groups. Isr. J. Math., 180, 413–424.CrossRefGoogle Scholar
[44] Diaconis, P., Fulman, J., and Guralnick, R. 2008. On fixed points of permutations. J. Algebraic Combin., 28, 189–218.CrossRefGoogle Scholar
[45] Dickson, L. E. 1901. Linear Groups, with an Exposition of the Galois Field Theory. B. G. Teubner, Leipzig.Google Scholar
[46] Dieudonné, J. 1951. On the automorphisms of the classical groups. Mem. Am. Math. Soc., 2.Google Scholar
[47] Dieudonné, J. 1955. La Géométrie des Groupes Classiques. Springer, Berlin.Google Scholar
[48] Dixon, J. D., and Mortimer, B. 1996. Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York.CrossRefGoogle Scholar
[49] Dobson, E., Malnič, A., Marušič, D., and Nowitz, L. A. 2007a. Minimal normal subgroups of transitive permutation groups of square-free degree. Discrete Math., 307, 373–385.CrossRefGoogle Scholar
[50] Dobson, E., Malnič, A., Marušič, D., and Nowitz, L. A. 2007b. Semiregular automorphisms of vertex-transitive graphs of certain valencies. J. Combin. Theory Ser. B, 97, 371–380.CrossRefGoogle Scholar
[51] Dobson, E., and Marušič, D. 2011. On semiregular elements of solvable groups. Commun. Algebra, 39, 1413–1426.CrossRefGoogle Scholar
[52] Fein, B., Kantor, W. M., and Schacher, M. 1981. Relative Brauer groups, II. J. Reine Angew. Math., 328, 39–57.Google Scholar
[53] Feit, W. 1980. Some consequences of the classification of finite simple groups. Pages 175–181 of: The Santa Cruz Conference on Finite Groups, 1979. Proceeding of Symposia in Pure Mathematics, vol. 37. American Mathematical Society, Providence, RI.Google Scholar
[54] Frucht, R. 1970. How to describe a graph. Ann. N. Y. Acad. Sci., 175, 159–167.CrossRefGoogle Scholar
[55] Fulman, J., and Guralnick, R. M. 2003. Derangements in simple and primitive groups. Pages 99–121 of: Groups, Combinatorics & Geometry (Durham, 2001). World Scientific, River Edge, NJ.Google Scholar
[56] Fulman, J., and Guralnick, R. M. 2012. Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements. Trans. Am. Math. Soc., 364, 3023–3070.CrossRefGoogle Scholar
[57] Fulman, J., and Guralnick, R. M. Derangements in finite classical groups for actions related to extension field and imprimitive subgroups and the solution of the Boston-Shalev conjecture. Submitted (arxiv:1508.00039).
[58] Fulman, J., and Guralnick, R. M.Derangements in subspace actions of finite classical groups. Trans. Am. Math. Soc., to appear.
[59] Galois, E. 1846. Oeuvres mathématiques: Lettre de Galois à M. Auguste Chevalier (29 Mai 1832). J. Math. Pures Appl. (Liouville), 11, 408–415.Google Scholar
[60] Gill, N. 2007. Polar spaces and embeddings of classical groups. N. Z. J. Math., 36, 175–184.Google Scholar
[61] Giudici, M. 2003. Quasiprimitive groups with no fixed point free elements of prime order. J. London Math. Soc., 67, 73–84.CrossRefGoogle Scholar
[62] Giudici, M. 2007. New constructions of groups without semiregular subgroups. Commun. Algebra, 35, 2719–2730.CrossRefGoogle Scholar
[63] Giudici, M., and Kelly, S. 2009. Characterizing a family of elusive permutation groups. J. Group Theory, 12, 95–105.CrossRefGoogle Scholar
[64] Giudici, M., Morgan, L., Potočnik, P., and Verret, G. 2015. Elusive groups of automorphisms of digraphs of small valency. Eur. J. Combin., 46, 1–9.CrossRefGoogle Scholar
[65] Giudici, M., and Xu, J. 2007. All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism. J. Algebraic Combin., 25, 217–232.CrossRefGoogle Scholar
[66] Gorenstein, D., and Lyons, R. 1983. The local structure of finite groups of characteristic 2 type. Mem. Am. Math. Soc., 276.Google Scholar
[67] Gorenstein, D., Lyons, R., and Solomon, R. 1998. The Classification of the Finite Simple Groups. Number 3. Mathematical Surveys and Monographs, vol. 40. American Mathematical Society, Providence, RI.Google Scholar
[68] Guralnick, R. M. 1990. Zeroes of permutation characters with applications to prime splitting and Brauer groups. J. Algebra, 131, 294–302.CrossRefGoogle Scholar
[69] Guralnick, R. M.Conjugacy classes of derangements in finite transitive groups. Proc. Steklov Inst. Math. In press.
[70] Guralnick, R. M., and Kantor, W. M. 2000. Probabilistic generation of finite simple groups. J. Algebra, 234, 743–792.CrossRefGoogle Scholar
[71] Guralnick, R. M., Müller, P., and Saxl, J. 2003. The rational function analogue of a question of Schur and exceptionality of permutation representations. Mem. Am. Math. Soc., 773.Google Scholar
[72] Guralnick, R. M., and Saxl, J. 2003. Generation of finite almost simple groups by conjugates. J. Algebra, 268, 519–571.CrossRefGoogle Scholar
[73] Guralnick, R. M., and Wan, D. 1997. Bounds for fixed point free elements in a transitive group and applications to curves over finite fields. Isr. J. Math., 101, 255–287.CrossRefGoogle Scholar
[74] Hartley, R. W. 1925. Determination of the ternary collineation groups whose coefficients lie in the GF(2n). Ann. Math., 27, 140–158.CrossRefGoogle Scholar
[75] Herstein, I. N. 1975. Topics in Algebra (Second edition). John Wiley & Sons, New York.Google Scholar
[76] Hiss, G., and Malle, G. 2001. Low-dimensional representations of quasi-simple groups. LMS J. Comput. Math., 4, 22–63.CrossRefGoogle Scholar
[77] Isbell, J. R. 1957. Homogeneous games. Math. Student, 25, 123–128.Google Scholar
[78] Isbell, J. R. 1960. Homogeneous games. II. Proc. Am. Math. Soc., 11, 159–161.CrossRefGoogle Scholar
[79] Isbell, J. R. 1964. Homogeneous games. III. Pages 255–265 of: Advances in Game Theory. Princeton University Press, Princeton, NJ.Google Scholar
[80] Jones, G. A. 2002. Cyclic regular subgroups of primitive permutation groups. J. Group Theory, 5, 403–407.CrossRefGoogle Scholar
[81] Jones, J. W., and Roberts, D. P. 2014. The tame-wild principle for discriminant relations for number fields. Algebra Number Theory, 8, 609–645.CrossRefGoogle Scholar
[82] Jordan, C. 1872. Recherches sur les substitutions. J. Math. Pures Appl. (Liouville), 17, 351–367.Google Scholar
[83] Jordan, D. 1988. Eine Symmetrieeigenschaft von Graphen. Pages 17–20 of: Graphentheorie und ihre Anwendungen (Stadt Wehlen, 1988). Dresdner Reihe Forsch., vol. 9. Päd. Hochsch., Dresden.Google Scholar
[84] Khukhro, E. I., and Mazurov, V. D. (eds.). 2014. The Kourovka Notebook: Unsolved Problems in Group Theory (Eighteenth edition). Institute of Mathematics, Novosibirsk.Google Scholar
[85] Kleidman, P. B. 1987. The maximal subgroups of the finite 8-dimensional orthogonal groups PO8+ (q) and of their automorphism groups. J. Algebra, 110, 173–242.CrossRefGoogle Scholar
[86] Kleidman, P., and Liebeck, M. 1990. The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[87] Knapp, A.W. 2007. Advanced Algebra. Cornerstones. Birkhäuser, Boston, MA.Google Scholar
[88] Kutnar, K., and Šparl, P. 2010. Distance-transitive graphs admit semiregular automorphisms. Eur. J. Combin., 31, 25–28.CrossRefGoogle Scholar
[89] Leighton, F. T. 1983. On the decomposition of vertex-transitive graphs into multicycles. J. Res. Natl. Bur. Stand., 88, 403–410.CrossRefGoogle Scholar
[90] Li, C. H. 2003. The finite primitive permutation groups containing an abelian regular subgroup. Proc. London Math. Soc., 87, 725–747.CrossRefGoogle Scholar
[91] Li, C. H. 2005. Permutation groups with a cyclic regular subgroup and arc transitive circulants. J. Algebraic Combin., 21, 131–136.CrossRefGoogle Scholar
[92] Li, C. H. 2006. Finite edge-transitive Cayley graphs and rotary Cayley maps. Trans. Am. Math. Soc., 358, 4605–4635.CrossRefGoogle Scholar
[93] Liebeck, M. W., and O'Brien, E. A. Conjugacy classes in finite groups of Lie type: representatives, centralizers and algorithms. In preparation.
[94] Liebeck, M. W., Praeger, C. E., and Saxl, J. 1988. On the O'Nan–Scott theorem for finite primitive permutation groups. J. Aust. Math. Soc. Ser. A, 44, 389–396.CrossRefGoogle Scholar
[95] Liebeck, M. W., Praeger, C. E., and Saxl, J. 2000. Transitive subgroups of primitive permutation groups. J. Algebra, 234, 291–361.CrossRefGoogle Scholar
[96] Liebeck, M. W., and Seitz, G. M. 2012. Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras. Mathematical Surveys and Monographs, vol. 180. American Mathematical Society, Providence, RI.Google Scholar
[97] Liebeck, M. W., and Shalev, A. 1999. Simple groups, permutation groups, and probability. J. Am. Math. Soc., 12, 497–520.CrossRefGoogle Scholar
[98] Lübeck, F. 2001. Small degree representations of finite Chevalley groups in defining characteristic. LMS J. Comput. Math., 4, 135–169.CrossRefGoogle Scholar
[99] Malle, G., and Testerman, D. 2011. Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Studies in Advanced Mathematics, vol. 133. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[100] Malnič, A., Marušič, D., Šparl, P., and Frelih, B. 2007. Symmetry structure of bicirculants. Discrete Math., 307, 409–414.CrossRefGoogle Scholar
[101] Marušič, D. 1981. On vertex symmetric digraphs. Discrete Math., 36, 69–81.CrossRefGoogle Scholar
[102] Marusic, D., and Scapellato, R. 1998. Permutation groups, vertex-transitive digraphs and semiregular automorphisms. Eur. J. Combin., 19, 707–712.Google Scholar
[103] McKay, B. D., and Royle, G. F. 1990. The transitive graphs with at most 26 vertices. Ars Combin., 30, 161–176.Google Scholar
[104] Mitchell, H. H. 1911. Determination of the ordinary and modular ternary linear groups. Trans. Am. Math. Soc., 12, 207–242.CrossRefGoogle Scholar
[105] Mitchell, H. H. 1914. The subgroups of the quaternary abelian linear group. Trans. Am. Math. Soc., 15, 379–396.CrossRefGoogle Scholar
[106] Montmort, P. R. de. 1708. Essay d'analyse sur les Jeux de Hazard. Quillau, Paris.Google Scholar
[107] Neumann, P. M., and Praeger, C. E. 1998. Derangements and eigenvalue-free elements in finite classical groups. J. London Math. Soc., 58, 564–586.CrossRefGoogle Scholar
[108] Pless, V. 1964. On Witt's theorem for nonalternating symmetric bilinear forms over a field of characteristic 2. Proc. Am. Math. Soc., 15, 979–983.Google Scholar
[109] Praeger, C. E., Li, C. H., and Niemeyer, A. C. 1997. Finite transitive permutation groups and finite vertex-transitive graphs. Pages 277–318 of: Graph Symmetry (Montreal, 1996). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 497. Kluwer, Dordrecht.Google Scholar
[110] Sabidussi, G. 1958. On a class of fixed-point-free graphs. Proc. Am. Math. Soc., 9, 800–804.CrossRefGoogle Scholar
[111] Saxl, J., and Seitz, G. M. 1997. Subgroups of algebraic groups containing regular unipotent elements. J. London Math. Soc., 55, 370–386.CrossRefGoogle Scholar
[112] Schur, I. 1933. Zur Theorie der einfach transitiven Permutationsgruppen. S. B. Preuss. Akad. Wiss., Phys.-Math. Kl., 598–623.Google Scholar
[113] Serre, J.-P. 2003. On a theorem of Jordan. Bull. Am. Math. Soc., 40, 429–440.CrossRefGoogle Scholar
[114] Spiga, P. 2013. Permutation 3-groups with no fixed-point-free elements. Algebra Colloq., 20, 383–394.CrossRefGoogle Scholar
[115] Steinberg, R. 1968. Lectures on Chevalley Groups. Department of Mathematics, Yale University.Google Scholar
[116] Suzuki, M. 1986. Group Theory II. Springer, New York.CrossRefGoogle Scholar
[117] Takács, L. 1979/1980. The problem of coincidences. Arch. Hist. Exact Sci., 21, 229–244.Google Scholar
[118] Taylor, D. E. 1992. The Geometry of the Classical Groups. Sigma Series in Pure Mathematics, vol. 9. Heldermann Verlag, Berlin.Google Scholar
[119] Wall, G. E. 1963. On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Aust. Math. Soc., 3, 1–62.CrossRefGoogle Scholar
[120] Wielandt, H. 1964. Finite Permutation Groups. Academic Press, New York.Google Scholar
[121] Wilson, R. A. 1985. Maximal subgroups of automorphism groups of simple groups. J. London Math. Soc., 32, 460–466.Google Scholar
[122] Wilson, R. A. 2009. The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251. Springer, London.CrossRefGoogle Scholar
[123] Zsigmondy, K. 1892. Zur Theorie der Potenzreste. Monatsh. Math. Phys., 3, 265–284.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth
  • Book: Classical Groups, Derangements and Primes
  • Online publication: 18 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059060.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth
  • Book: Classical Groups, Derangements and Primes
  • Online publication: 18 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059060.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth
  • Book: Classical Groups, Derangements and Primes
  • Online publication: 18 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059060.010
Available formats
×