Published online by Cambridge University Press: 05 June 2012
A special but important class of dynamics is provided by systems in which friction is negligible, or, more generally, where dissipative effects play no role. In this case the direction of time is not specific, the process described by a differential equation is reversible: forward and backward time behaviour is similar. Think of, for example, a planet: one cannot decide whether its motion recorded on a film takes place in direct or in reversed time. In frictionless systems phase space volume is preserved, and attractors cannot exist. In such conservative systems, the manifestation of chaos is of a different nature than in dissipative cases. In this chapter we investigate persistent conservative chaos where escape is impossible, and defer the problem of transient conservative chaos to Chapter 8. We start with the area preserving baker map and the stroboscopic map of a kicked rotator. Next, the dynamics of continuous-time, non-driven frictionless systems is considered. On the basis of these examples, we summarize the general properties of conservative chaos, including one of the most important relationships, the KAM theorem. The structure of chaotic bands characteristic of conservative systems is discussed and compared with that of chaotic attractors. Finally, we present how conservative chaos of increasing strength manifests itself and we discuss the consequences.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.