Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T06:25:20.100Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2014

Jean-Sébastien Caux
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M. 1977. Some finite dimensional integrable systems and their scattering behavior. Commun. Math. Phys., 55, 195–230.Google Scholar
Araki, H. 1969. Commun. Math. Phys., 14, 120–157.
Babbitt, D. G. and Thomas, L. E. 1977a. Explicit Plancherel theorem for ground state representation of the Heisenberg chain. Proc. Nat. Acad. Sci. USA, 74(3), 816–817.Google Scholar
Babbitt, D. G. and Thomas, L. E. 1977b. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. II. An explicit Plancherel formula. Commun. Math. Phys., 54, 255–278.Google Scholar
Babbitt, D. G. and Thomas, L. E. 1978. Ground state representation of the ininite one-dimensional Heisenberg ferromagnet. III. Scattering theory. J. Math. Phys., 19(8), 1699–1704.Google Scholar
Babelon, O., de Vega, H. J. and Viallet, C. M. 1983. Analysis of the Bethe ansatz equations of the XXZ model. Nucl. Phys. B, 220, 13–34.Google Scholar
Barber, M. N. and Baxter, R. J. 1973. On the spontaneous order of the eight-vertex model. J. Phys. C: Solid St. Phys., 6(20), 2913.Google Scholar
Barouch, E. 1972. In: Domb, C. and Green, M. S. (eds), Phase Transitions and Critical Phenomena, Vol. IV. London: Academic Press.
Barouch, E., McCoy, B. M. and Dresden, M. 1970. Statistical mechanics of the XY model. I. Phys. Rev. A, 2, 1075–1092.Google Scholar
Barut, A. O. 1977. Nonlinear Equations in Physics and Mathematics. Dordrecht: Reidel.
Baxter, R. J. 1969. F model on a triangular lattice. J. Math. Phys., 10(7), 1211–1216.Google Scholar
Baxter, R. J. 1970a. Colorings of a hexagonal lattice. J. Math. Phys., 11(3), 784–789.Google Scholar
Baxter, R. J. 1970b. Three-colorings of the square lattice: A hard squares model. J. Math. Phys., 11(10), 3116–3124.Google Scholar
Baxter, R. J. 1971a. Eight-vertex model in lattice statistics. Phys. Rev. Lett., 26, 832–833.Google Scholar
Baxter, R. J. 1971b. Generalized ferroelectric model on the square lattice. Stud. App. Math., 50, 51.Google Scholar
Baxter, R. J. 1972a. One-dimensional anisotropic Heisenberg chain. Ann. Phys., 70(2), 323–337.Google Scholar
Baxter, R. J. 1972b. Partition function of the eight-vertex lattice model. Ann. Phys., 70(1), 193–228.Google Scholar
Baxter, R. J. 1973a. Asymptotically degenerate maximum eigenvalues of the eight-vertex model transfer matrix and interfacial tension. J. Stat. Phys., 8, 25–55.Google Scholar
Baxter, R. J. 1973b. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors. Ann. Phys, 76(1), 1–24.Google Scholar
Baxter, R. J. 1973c. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model. Ann. Phys., 76(1), 25–47.Google Scholar
Baxter, R. J. 1973d. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. III. Eigenvectors of the transfer matrix and Hamiltonian. Ann. Phys., 76(1), 48–71.Google Scholar
Baxter, R. J. 1973e. Spontaneous staggered polarization of the F model. J. Phys. C: Sol. St. Phys., 6(5), L94.Google Scholar
Baxter, R. J. 1978. Solvable eight-vertex model on an arbitrary planar lattice. Phil. Trans. Roy. Soc. London A, 289(1359), 315–346.Google Scholar
Baxter, R. J. 1980. Hard hexagons: Exact solution. J. Phys. A: Math. Gen., 13(3), L61.Google Scholar
Belavin, A. A. 1979. Exact solution of the two-dimensional model with asymptotic freedom. Phys. Lett. B, 87, 117–121.Google Scholar
Bergknoff, H. and Thacker, H. B. 1979a. Method for solving the massive Thirring model. Phys. Rev. Lett., 42, 135–138.Google Scholar
Bergknoff, H. and Thacker, H. B. 1979b. Structure and solution of the massive Thirring model. Phys. Rev. D, 19, 3666–3681.Google Scholar
Bethe, H. 1931. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Zeit. für Physik, 71, 205.Google Scholar
Bloch, F. 1930. Zur Theorie des Ferromagnetismus. Z. Phys., 61, 206.Google Scholar
Boiti, M. and Pempinelli, F. 1980. Nonlinear Schrödinger equation, Backhand transformations and Painlevé transcendents. Il Nuovo Cimento B, 59, 40–58.Google Scholar
Bonner, J. C. 1968. Numerical studies on the linear Ising-Heisenberg model. Ph.D. thesis, University of London.
Bonner, J. C. and Fisher, M. E. 1964. Linear magnetic chains with anisotropic coupling. Phys. Rev., 135(3A), A640–A658.Google Scholar
Brézin, E. and Zinn-Justin, J. 1966. Un problème à N corps soluble. C. R. Acad. Sci. Paris, sér. A-B, 263, 670–673.Google Scholar
Brézin, E., Itzykson, C., Zinn-Justin, J. and Zuber, J. B. 1979. Remarks about the existence of non-local charges in two-dimensional models. Phys. Lett. B, 82(3&4), 442–444.Google Scholar
Bychkov, Yu., Gor'kov, L. and Dzyaloshinskii, I. 1966. Possibility of superconductivity type phenomena in a one-dimensional system. Sov. Phys. JETP, 23, 489–501.Google Scholar
Calogero, F. 1971. Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys., 12(3), 419–436.Google Scholar
Calogero, F. 1978. Integrable many-body problems. In: Barut, A. O. (ed.), Nonlinear Equations in Physics and Mathematics. Dordrecht: Reidel. Proceedings of the NATO Advanced Study Institute held in Istanbul, August 1977.
Calogero, F. 1981. Matrices, differential operators, and polynomials. J. Math. Phys., 22(5), 919–934.Google Scholar
Calogero, P., Ragnisco, O. and Marchioro, C. 1975. Exact solution of the classical and quantal one-dimensional many-body problems with the two-body potential V (x) = g2a2 sinh-2 ax. Lett. al Nuovo Cimento, 13, 383–387.Google Scholar
Case, K. M. 1973. On discrete inverse scattering problems. II. J. Math. Phys., 14(7), 916–920.Google Scholar
Chudnovsky, D. 1979. Simpliied Schlesinger's systems. Lett. al Nuovo Cimento, 26, 423–427.Google Scholar
Chudnovsky, D. V. and Chudnovsky, G. V. 1980. Zakharov-Shabat-Mikhailov scheme of construction of two-dimensional completely integrable field theories. Zeit. für Physik C, 5, 55–62.Google Scholar
Chudnovsky, D. and Chudnovsky, G. 1982. Hamiltonian structure of isospectral deformation equations. Elliptic curve case. In: Chudnovsky, D. and Chudnovsky, G. (eds), The Riemann Problem, Complete Integrability and Arithmetic Applications. Lecture Notes in Mathematics, Vol. 925. Berlin: Springer-Verlag; pp. 134–146.
Coleman, S. 1975. Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D, 11, 2088–2097.Google Scholar
Coxeter, H. S. M. 1948. Regular Polytopes. London: Methuen.
Coxeter, H. S. M. and Moser, W. O. J. 1972. Generators and Relations for Discrete Groups, 3rd edn. Berlin: Springer-Verlag.
Dashen, R. F., Hasslacher, B. and Neveu, A. 1975. Particle spectrum in model field theories from semiclassical functional integral techniques. Phys.Rev.D, 11, 3424–3450.Google Scholar
Derrida, B. 1976. Solution d'un modèle à trois corps: étude de la dissusion. Ph.D. thesis, Université Paris.
des Cloizeaux, J. 1966. A soluble Fermi-gas model. Validity of transformations of the Bogoliubov type. J. Math. Phys., 7(12), 2136–2144.Google Scholar
des Cloizeaux, J. and Gaudin, M. 1966. Anisotropic linear magnetic chain. J. Math. Phys., 7(8), 1384–1400.Google Scholar
des Cloizeaux, J. and Pearson, J. J. 1962. Spin-wave spectrum of the antiferromagnetic linear chain. Phys. Rev., 128(5), 2131–2135.Google Scholar
Dirac, P. A. M. 1967. The Principles of Quantum Mechanics, 4th edn (revised). Oxford: Oxford University Press.
Dyson, F. J. 1956. General theory of spin-wave interactions. Phys. Rev., 102(5), 1217–1230.Google Scholar
Dyson, F. J. 1962. Statistical theory of the energy levels of complex systems. I. J. Math. Phys., 3(1), 140–156.Google Scholar
Dyson, F. J. 1976. Fredholm determinants and inverse scattering problems. Commun. Math. Phys., 47, 171–183.Google Scholar
Dzyaloshinskii, I. E. and Larkin, A. I. 1974. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Sov. Phys. JETP, 38. Russian original: ZhETF, Vol. 65, No. 1, p. 411, January 1974.Google Scholar
Faddeev, L. D. 1980. Quantum completely integrable models of ield theory. In: Mathematical Physics Review Section C, Vol. 107. New York: Harwood Academic; p. 155.
Fan, C. and Wu, F. Y. 1970. General lattice model of phase transitions. Phys. Rev. B, 2, 723–733.Google Scholar
Fateev, V. A. 1980. The factorizable S matrix for the particles with different parity and integrable anisotropic spin chain with spin one. Technical Report CERN, Ref. TH 2963.
Fisher, M. E. 1968. In: Proceedings of the International Conference on Statistical Mechanics, Kyoto.
Fisher, M. E. 1969. J. Phys. Soc. Japan Suppl., 26, 87.
Flaschka, H. 1974. On the Toda lattice. II. Prog. Theor. Phys., 51(3), 703–716.Google Scholar
Fogedby, H. C. 1980. Solitons and magnons in the classical Heisenberg chain. J. Phys. A: Math. Gen., 13(4), 1467.Google Scholar
Frobenius, F. G. 1880. Über das Additions-theorem der Thetafunktionen mehrerer Variabeln. J. reine angew. Math., 89, 185.Google Scholar
Frobenius, F. G. 1968. Gesammelte Abhandlungen, Band II. Berlin: Springer-Verlag.
Gaaff, A. and Hijmans, J. 1975. Symmetry relations in the sixteen-vertex model. Physica A, 80(2), 149–171.Google Scholar
Gaudin, M. 1967a. Étude d'une modèle à une dimension pour un système de fermions en interaction. Ph.D. thesis, Université Paris. CEA Report No. 5-3569 (1968).
Gaudin, M. 1967b. Un systeme à une dimension de fermions en interaction. Phys. Lett. A, 24(1), 55–56.Google Scholar
Gaudin, M. 1971a. Bose gas in one dimension. I. The closure property of the scattering wavefunctions. J. Math. Phys., 12(8), 1674–1676.Google Scholar
Gaudin, M. 1971b. Bose gas in one dimension. II. Orthogonality of the scattering states. J. Math. Phys., 12(8), 1677–1680.Google Scholar
Gaudin, M. 1971c. Boundary energy of a Bose gas in one dimension. Phys. Rev. A, 4, 386–394.Google Scholar
Gaudin, M. 1971d. Thermodynamics of the Heisenberg-Ising ring for Δ ≥ 1. Phys. Rev. Lett., 26(21), 1301–1304.Google Scholar
Gaudin, M. (1) 1972; (2) 1973. Modèles exacts en mécanique statistique: la méthode de Bethe et généralisations. Technical Report, CEA Saclay.
Gaudin, M. 1976. Diagonalisation d'une classe d'Hamiltoniens de spin. J. Physique, 37, 1087–1098.Google Scholar
Gaudin, M. 1978. Sur le problème de deux ou trois électrons en présence d'un moment localisé. J. Physique, 39, 1143–1168.Google Scholar
Gaudin, M. and Derrida, B. 1975. Solution exacte d'un probléme à trois corps. J. Physique, 36, 1183–1197.Google Scholar
Gaudin, M., McCoy, B. M. and Wu, T. T. 1981. Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg-Ising chain. Phys. Rev. D, 23, 417–419.Google Scholar
Girardeau, M. 1960. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys., 1(6), 516–523.Google Scholar
Green, H. S. and Hurst, C. A. 1964. Order-Disorder Phenomena. New York: Wiley-Interscience.
Grifiths, R. B. 1964. Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain. Phys. Rev., 133(3A), A768–A775.Google Scholar
Gutkin, E. and Sutherland, B. 1979. Completely integrable systems and groups generated by reflections. Proc. Nat. Acad. Sci. USA, 76, 6057–6059.Google Scholar
Hammermesh, M. 1964. Group Theory and its Application to Physical Problems. New York: Addison-Wesley.
Heine, E. 1881. Handbuch der Kugelfunktionen II, 2nd edn. Berlin: Springer-Verlag; p. 472.
Heisenberg, W. 1928. Zur Theorie des Ferromagnetismus. Z. Phys., 49, 619.Google Scholar
Hida, K. 1981. Rigorous derivation of the distribution of the eigenstates of the quantum Heisenberg-Ising chain with XY-like anisotropy. Phys. Lett. A, 84(6), 338–340.Google Scholar
Hirota, R. 1973. Exact N-soliton solution of a nonlinear lumped network equation. J. Phys. Soc. Japan, 35(1), 286–288.Google Scholar
Hirota, R. and Satsuma, J. 1976. A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theor. Phys. Suppl., 59, 64–100.Google Scholar
Honerkamp, J. and Weber, P. 1979. Calculation of the S-matrix from the Hamiltonian of the massive Thirring model. Technical Report, Université Fribourg.
Hulthén, L. 1938. Über das Austauschproblem eines Kristalles. Arkiv Mat. Astron. Fysik, 26A, 1.Google Scholar
Huston, V. 1963. The circular plate condenser at small separations. Proc. Camb. Phil. Soc., 59, 211.Google Scholar
Iagolnitzer, D. 1978. Factorization of the multiparticle S matrix in two-dimensional space-time models. Phys. Rev. D, 18, 1275–1285.Google Scholar
Ising, E. 1925. Beitrag zur Theorie des Ferromagnetismus. Zeit. für Phys., 31, 253–258.Google Scholar
Izergin, A. G. and Korepin, V. E. 1981. The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. Math. Phys., 79, 303–316.Google Scholar
Jimbo, M., Miwa, T., Mori, Y. and Sato, M. 1980. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D, 1(1), 80–158.Google Scholar
Johnson, J. D. and McCoy, B. M. 1972. Low-temperature thermodynamics of the | Δ | ≥ 1 Heisenberg-Ising ring. Phys.Rev. A, 6, 1613–1626.Google Scholar
Johnson, J. D., Krinsky, S. and McCoy, B. M. 1973. Vertical-arrow correlation length in the eight-vertex model and the low-lying excitations of the X-Y-Z Hamiltonian. Phys. Rev. A, 8(5), 2526–2547.Google Scholar
Jost, R. 1955. Mathematical analysis of a simple model for the stripping reaction. Zeit. für Angew. Math. Phys., 6, 316–326.Google Scholar
Kac, M. and Pollard, H. 1956. Partial sums of independent random variables. Canadian J. Math., 2, 375.Google Scholar
Kadanoff, L. P. and Wegner, F. J. 1971. Some critical properties of the eight-vertex model. Phys.Rev.B, 4, 3989–3993.Google Scholar
Karowski, M., Thun, H. J., Truong, T. T., and Weisz, P. H. 1977. On the uniqueness of a purely elastic S-matrix in (1+1) dimensions. Phys. Lett. B, 67(3), 321–322.Google Scholar
Kasteleyn, W. P. 1967. Graph theory and crystal physics. In: Harary, F. (ed.), Graph Theory and Theoretical Physics. New York: Academic Press.
Kirchhoff, G. 1877. Zur Theorice des Condensators. Monatsb. Acad. Wiss. Berlin, 144–162.Google Scholar
Korepin, V. E. 1980. The mass spectrum and the S-matrix of the massive Thirring model in the repulsive case. Commun. Math. Phys., 76, 165–176.Google Scholar
Korepin, V. E. 1982. Calculation of norms of Bethe wavefunctions. Commun. Math. Phys., 86, 391–418.Google Scholar
Kulish, P. P. 1979. Generalized Bethe ansatz and quantum inverse problem method. Preprint, Leningrad Branch of the Mathematics Institute, Leningrad.
Kulish, P. P. and Sklyanin, E. K. 1979. Quantum inverse scattering method and the Heisenberg ferromagnet. Phys. Lett. A, 70(5&6), 461–463.Google Scholar
Kulish, P., Reshetikhin, N. and Sklyanin, E. 1981. Yang-Baxter equation and representation theory: I. Lett. Math. Phys., 5, 393–403.Google Scholar
Lai, C. K. 1974. Lattice gas with nearest-neighbor interaction in one dimension with arbitrary statistics. J. Math. Phys., 15(10), 1675–1676.Google Scholar
Lakshmanan, M. 1977. Continuum spin system as an exactly solvable dynamical system. Phys. Lett. A, 61(1), 53–54.Google Scholar
Lax, P. D. 1968. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math., 21(5), 467–490.Google Scholar
Lenard, A. 1964. Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons. J. Math. Phys., 5(7), 930–943.Google Scholar
Leppington, F. and Levine, H. 1970. On the capacity of the circular disc condenser at small separation. Proc. Camb. Phil. Soc., 68, 235.Google Scholar
Lieb, E. H. 1963. Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev., 130(4), 1616–1624.Google Scholar
Lieb, E. H. 1967a. Exact solution of the F model of an antiferroelectric. Phys. Rev. Lett., 18, 1046–1048.Google Scholar
Lieb, E. H. 1967b. Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett., 18, 692–694.Google Scholar
Lieb, E. H. 1967c. Exact solution of the two-dimensional Slater KDP model of a ferroelectric. Phys. Rev. Lett., 19, 108–110.Google Scholar
Lieb, E. H. 1967d. Residual entropy of square ice. Phys. Rev., 162, 162–172.Google Scholar
Lieb, E. H. and Liniger, W. 1963. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130(4), 1605–1616.Google Scholar
Lieb, E. H. and Mattis, D. 1962. Theory of ferromagnetism and the ordering of electronic energy levels. Phys. Rev., 125(1), 164–172.Google Scholar
Lieb, E. and Mattis, D. (eds). 1966. Mathematical Physics in One Dimension. New York: Academic Press.
Lieb, E. H. and Wu, F. Y. 1968. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20(25), 1445–1448.Google Scholar
Lieb, E. and Wu, F. Y. 1972. Two dimensional ferroelectric models. In: Domb, C. and Green, M. S. (eds), Critical Phenomena and Phase Transitions. New York: Academic Press.
Lieb, E., Schultz, T. and Mattis, D. 1961. Two soluble models of an antiferromagnetic chain. Ann. Phys., 16, 407–466.Google Scholar
Lipszyc, K. 1973. One-dimensional model of the rearrangement and dissociation processes. Probability amplitudes and cross-sections. Acta Phys. Polon., 44, 115–137.Google Scholar
Lipszyc, K. 1974. One-dimensional model of the rearrangement process and the Faddeev equations. J. Math. Phys., 15(1), 133–138.Google Scholar
Lipszyc, K. 1980. On the application of the Sommerfeld-Maluzhinetz transformation to some one-dimensional three-particle problems. J. Math. Phys., 21(5), 1092–1102.Google Scholar
Luther, A. and Peschel, I. 1975. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B, 12(9), 3908–3917.Google Scholar
Luttinger, J. M. 1963. An exactly soluble model of a many-fermion system. J. Math. Phys., 4(9), 1154–1162.Google Scholar
Mattheiss, L. F. 1961. Antiferromagnetic linear chain. Phys. Rev., 123(4), 1209–1218.Google Scholar
Mattis, D. C. and Lieb, E. H. 1965. Exact solution of a many-fermion system and its associated boson field. J. Math. Phys., 6, 304–312.Google Scholar
McCoy, B. and Wu, T. 1968. Hydrogen-bonded crystals and the anisotropic Heisenberg chain. Nuovo Cimento B, 56, 311–315.Google Scholar
McCoy, B. and Wu, T. T. 1973. The Two-dimensional Ising Model. Cambrdige, MA: Harvard University Press.
McGuire, J. B. 1964. Study of exactly soluble one-dimensional N-body problems. J. Math. Phys., 5(5), 622–636.Google Scholar
McGuire, J. B. 1965. Interacting fermions in one dimension. I. Repulsive potential. J. Math. Phys., 6(3), 432–439.Google Scholar
McGuire, J. B. 1966. Interacting fermions in one dimension. II. Attractive potential. J. Math. Phys., 7(1), 123–132.Google Scholar
McGuire, J. B. and Hurst, C. A. 1972. The scattering of three impenetrable particles in one dimension. J. Math. Phys., 13(10), 1595–1607.Google Scholar
Mehta, M. L. 1980. Random Matrices. New York: Academic Press.
Mikhlin, S. 1964. Integral Equations. Oxford: Pergamon Press.
Muir, T. 1966. A Treatise on the Theory of Determinants (1933). New York: Dover.
Nagle, J. F. 1966. Lattice statistics of hydrogen bonded crystals. I. The residual entropy of ice. J. Math. Phys., 7(8), 1484–1491.Google Scholar
Nussenzveig, H. M. 1961. Soluble model of a break-up process. Proc. Roy. Soc. London A, 264(1318), 408–430.Google Scholar
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 65, 117–149.Google Scholar
Onsager, L. and Dupuis, M. 1960. Corso: Thermodinamica dei processi irreversibili. In: Rendiconti della Scuola internazionale di Fisica (Enrico Fermi) X. Societa Italiana di Fisica, Bologna.
Orbach, R. 1958. Linear antiferromagnetic chain with anisotropic coupling. Phys. Rev., 112(2), 309–316.Google Scholar
Ovchinnikov, A. A. 1967. Complexes of several spins in a linear Heisenberg chain. Sov. Phys. JETP Lett., 5, 48.Google Scholar
Ovchinnikov, A. A. 1969. Excitation spectrum of an antiferromagnetic Heisenberg chain. Sov. Phys. JETP, 29, 727.Google Scholar
Ovchinnikov, A. A. 1970. Excitation spectrum in the one-dimensional Hubbard model. Sov. Phys. JETP, 30, 1160.Google Scholar
Pauling, L. 1960. The Nature of the Chemical Bond, 3rd edn. Ithaca, NY: Cornell University Press.
Percus, J. K. 1971. Combinatorial Methods. New York: Springer-Verlag.
Pohlmeyer, K. 1976. Integrable Hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys., 46, 207–221.Google Scholar
Richardson, R. W. 1965. Exact eigenstates of the pairing-force Hamiltonian. II. J. Math. Phys., 6(7), 1034–1051.Google Scholar
Ruijsenaars, S. N. M. 1980a. On one-dimensional integrable quantum systems with ininitely many degrees of freedom. Ann. Phys., 128(2), 335–362.Google Scholar
Ruijsenaars, S. N. M. 1980b. The continuum limit of the infinite isotropic Heisenberg chain in its ground state representation. J. Funct. Anal., 39(1), 75–84.Google Scholar
Schroer, B., Truong, T. T. and Weisz, P. 1976. Towards an explicit construction of the sine-Gordon ield theory. Phys. Lett. B, 63(4), 422–424.Google Scholar
Schwartz, L. 1950. Théorie des distributions. Paris: Hermann.
Siegel, C. L. 1969. Topics in Complex Function Theory. New York: Wiley-Interscience.
Siegel, C. L. 1973. Topics in Complex Function Theory, 2nd edn. New York: Wiley-Interscience.
Sklyanin, E. K., Takhtadzhyan, L. A. and Faddeev, L. D. 1979. Quantum inverse problem method. I. Theor. Math. Phys., 40, 688–706.Google Scholar
Slater, J. C. 1930. Cohesion in monovalent metals. Phys. Rev., 35(5), 509–529.Google Scholar
Sneddon, I. N. 1966. Mixed Boundary Value Problems in Potential Theory. Amsterdam: North-Holland.
Sutherland, B. 1968. Further results for the many-body problem in one dimension. Phys. Rev. Lett., 20(3), 98.Google Scholar
Sutherland, B. 1970. Two-dimensional hydrogen bonded crystals without the ice rule. J. Math. Phys., 11(11), 3183–3186.Google Scholar
Sutherland, B. 1971. Quantum many-body problem in one dimension: thermodynamics. J. Math. Phys., 12(2), 251–256.Google Scholar
Sutherland, B. 1975. Model for a multicomponent quantum system. Phys. Rev. B, 12(9), 3795–3805.Google Scholar
Sutherland, B. 1980. Nondiffractive scattering: Scattering from kaleidoscopes. J. Math. Phys., 21(7), 1770–1775.Google Scholar
Sutherland, B., Yang, C. N. and Yang, C. P. 1967. Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett., 19, 588.Google Scholar
Szegö, G. 1939. Orthogonal Polynomials. Rhode Island: American Mathematical Society.
Takahashi, M. 1971. One-dimensional Heisenberg model at inite temperature. Prog. Theor. Phys., 46(2), 401–415.Google Scholar
Takahashi, M. and Suzuki, M. 1972. One-dimensional anisotropic Heisenberg model at finite temperatures. Prog. Theor. Phys., 48(6), 2187–2209.Google Scholar
Takhtadzhyan, L. A. and Faddeev, L. D. 1974. Essentially nonlinear one-dimensional model of classical field theory. Theor. Math. Phys., 21, 1046–1057.Google Scholar
Takhtajan, L. A. 1977. Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. A, 64(2), 235–237.Google Scholar
Thacker, H. B. 1980. Quantum inverse method for two-dimensional ice and ferroelectric lattice models. J. Math. Phys., 21(5), 1115–1117.Google Scholar
Thacker, H. B. 1981. Exact integrability in quantum ield theory and statistical systems. Rev. Mod. Phys., 53(2), 253–285.Google Scholar
Thomas, L. E. 1977. Ground state representation of the ininite one-dimensional Heisenberg ferromagnet, I. J. Math. Anal. Appl., 59(2), 392–414.Google Scholar
Titchmarsh, E. C. 1939. The Theory of Functions, 2nd edn. London: Oxford University Press.
Toda, M. 1970. Waves in nonlinear lattice. Prog. Theor. Phys. Suppl., 45, 174–200.Google Scholar
Vaidya, H. G. and Tracy, C. A. 1979. One-particle reduced density matrix of impenetrable bosons in one dimension at zero temperature. Phys. Rev. Lett., 42, 3–6.Google Scholar
Walker, L. R. 1959. Antiferromagnetic linear chain. Phys. Rev., 116(5), 1089–1090.Google Scholar
Wannier, G. H. 1950. Antiferromagnetism. The triangular Ising net. Phys. Rev., 79, 357–364.Google Scholar
Weyl, H. 1935. Elementary Theory of Invariants. Princeton, NJ: Princeton University Press.
Whittaker, E. T. and Watson, G. N. 1927. A Course of Modern Analysis, 4th edn. Cambridge: Cambridge University Press.
Wiegmann, P. B. 1981. Exact solution of the s-d exchange model (Kondo problem). J. Phys. C: Solid State Phys., 14(10), 1463.Google Scholar
Woynarovich, F. 1982. On the S = 0 excited states of an anisotropic Heisenberg chain. J. Phys. A., 15, 2985–2996.Google Scholar
Yang, C. N. 1952. The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev., 85, 808–816.Google Scholar
Yang, C. N. 1967. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett., 19(23), 1312–1315.Google Scholar
Yang, C. N. 1968. S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys. Rev., 168, 1920–1923.Google Scholar
Yang, C. N. and Yang, C. P. 1966a. Ground-state energy of a Heisenberg-Ising lattice. Phys. Rev., 147, 303–306.Google Scholar
Yang, C. N. and Yang, C. P. 1966b. One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a inite system. Phys. Rev., 150(1), 321–327.Google Scholar
Yang, C. N. and Yang, C. P. 1966c. One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground-state energy per lattice site for an ininite system. Phys. Rev., 150(1), 327–339.Google Scholar
Yang, C. N. and Yang, C. P. 1966d. One-dimensional chain of anisotropic spin-spin interactions. III. Applications. Phys. Rev., 151(1), 258–264.Google Scholar
Yang, C. N. and Yang, C. P. 1969. Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 10(7), 1115–1122.Google Scholar
Yang, C. P. 1967. Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett., 19, 586–588.Google Scholar
Zakharov, V. E. and Shabat, A. B. 1972. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Sov. Phys. JETP, 34(1), 62.Google Scholar
Zamolodchikov, A. B. 1977. Exact two-particle S-matrix of quantum sine-Gordon solitons. Commun. Math. Phys., 55, 183–186.Google Scholar
Zamolodchikov, A. B. 1979. Z4-symmetric factorized S-matrix in two space-time dimensions. Commun. Math. Phys., 69, 165–178.Google Scholar
Zamolodchikov, A. B. 1980. Tetrahedra equations and integrable systems in three-dimensional space. Sov. Phys. JETP, 52(2), 325.Google Scholar
Zamolodchikov, A. B. and Zamolodchikov, Al. B. 1978. Relativistic factorized S-matrix in two dimensions having O (N) isotopic symmetry. Nucl. Phys. B, 133(3), 525–535.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×