Skip to main content Accessibility help
×
Publisher:
Cambridge University Press
Online publication date:
April 2014
Print publication year:
2014
Online ISBN:
9781107053885

Book description

Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and the Toda chain.

Reviews

'The book presents in detail many important computations. This allows the beginner in the field to learn many of the techniques that are relevant for new applications. … [This] is an outstanding book which every library should have. It will be extremely useful both for graduate and postgraduate students. The book can also serve as a source of inspiration for an advanced physics course on integrable models both in condensed matter theory and statistical physics. The translator has done a great job making this book accessible to the much wider audience it deserves.'

Gunter M. Schütz Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Adler, M. 1977. Some finite dimensional integrable systems and their scattering behavior. Commun. Math. Phys., 55, 195–230.
Araki, H. 1969. Commun. Math. Phys., 14, 120–157.
Babbitt, D. G. and Thomas, L. E. 1977a. Explicit Plancherel theorem for ground state representation of the Heisenberg chain. Proc. Nat. Acad. Sci. USA, 74(3), 816–817.
Babbitt, D. G. and Thomas, L. E. 1977b. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. II. An explicit Plancherel formula. Commun. Math. Phys., 54, 255–278.
Babbitt, D. G. and Thomas, L. E. 1978. Ground state representation of the ininite one-dimensional Heisenberg ferromagnet. III. Scattering theory. J. Math. Phys., 19(8), 1699–1704.
Babelon, O., de Vega, H. J. and Viallet, C. M. 1983. Analysis of the Bethe ansatz equations of the XXZ model. Nucl. Phys. B, 220, 13–34.
Barber, M. N. and Baxter, R. J. 1973. On the spontaneous order of the eight-vertex model. J. Phys. C: Solid St. Phys., 6(20), 2913.
Barouch, E. 1972. In: Domb, C. and Green, M. S. (eds), Phase Transitions and Critical Phenomena, Vol. IV. London: Academic Press.
Barouch, E., McCoy, B. M. and Dresden, M. 1970. Statistical mechanics of the XY model. I. Phys. Rev. A, 2, 1075–1092.
Barut, A. O. 1977. Nonlinear Equations in Physics and Mathematics. Dordrecht: Reidel.
Baxter, R. J. 1969. F model on a triangular lattice. J. Math. Phys., 10(7), 1211–1216.
Baxter, R. J. 1970a. Colorings of a hexagonal lattice. J. Math. Phys., 11(3), 784–789.
Baxter, R. J. 1970b. Three-colorings of the square lattice: A hard squares model. J. Math. Phys., 11(10), 3116–3124.
Baxter, R. J. 1971a. Eight-vertex model in lattice statistics. Phys. Rev. Lett., 26, 832–833.
Baxter, R. J. 1971b. Generalized ferroelectric model on the square lattice. Stud. App. Math., 50, 51.
Baxter, R. J. 1972a. One-dimensional anisotropic Heisenberg chain. Ann. Phys., 70(2), 323–337.
Baxter, R. J. 1972b. Partition function of the eight-vertex lattice model. Ann. Phys., 70(1), 193–228.
Baxter, R. J. 1973a. Asymptotically degenerate maximum eigenvalues of the eight-vertex model transfer matrix and interfacial tension. J. Stat. Phys., 8, 25–55.
Baxter, R. J. 1973b. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors. Ann. Phys, 76(1), 1–24.
Baxter, R. J. 1973c. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model. Ann. Phys., 76(1), 25–47.
Baxter, R. J. 1973d. Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. III. Eigenvectors of the transfer matrix and Hamiltonian. Ann. Phys., 76(1), 48–71.
Baxter, R. J. 1973e. Spontaneous staggered polarization of the F model. J. Phys. C: Sol. St. Phys., 6(5), L94.
Baxter, R. J. 1978. Solvable eight-vertex model on an arbitrary planar lattice. Phil. Trans. Roy. Soc. London A, 289(1359), 315–346.
Baxter, R. J. 1980. Hard hexagons: Exact solution. J. Phys. A: Math. Gen., 13(3), L61.
Belavin, A. A. 1979. Exact solution of the two-dimensional model with asymptotic freedom. Phys. Lett. B, 87, 117–121.
Bergknoff, H. and Thacker, H. B. 1979a. Method for solving the massive Thirring model. Phys. Rev. Lett., 42, 135–138.
Bergknoff, H. and Thacker, H. B. 1979b. Structure and solution of the massive Thirring model. Phys. Rev. D, 19, 3666–3681.
Bethe, H. 1931. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Zeit. für Physik, 71, 205.
Bloch, F. 1930. Zur Theorie des Ferromagnetismus. Z. Phys., 61, 206.
Boiti, M. and Pempinelli, F. 1980. Nonlinear Schrödinger equation, Backhand transformations and Painlevé transcendents. Il Nuovo Cimento B, 59, 40–58.
Bonner, J. C. 1968. Numerical studies on the linear Ising-Heisenberg model. Ph.D. thesis, University of London.
Bonner, J. C. and Fisher, M. E. 1964. Linear magnetic chains with anisotropic coupling. Phys. Rev., 135(3A), A640–A658.
Brézin, E. and Zinn-Justin, J. 1966. Un problème à N corps soluble. C. R. Acad. Sci. Paris, sér. A-B, 263, 670–673.
Brézin, E., Itzykson, C., Zinn-Justin, J. and Zuber, J. B. 1979. Remarks about the existence of non-local charges in two-dimensional models. Phys. Lett. B, 82(3&4), 442–444.
Bychkov, Yu., Gor'kov, L. and Dzyaloshinskii, I. 1966. Possibility of superconductivity type phenomena in a one-dimensional system. Sov. Phys. JETP, 23, 489–501.
Calogero, F. 1971. Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys., 12(3), 419–436.
Calogero, F. 1978. Integrable many-body problems. In: Barut, A. O. (ed.), Nonlinear Equations in Physics and Mathematics. Dordrecht: Reidel. Proceedings of the NATO Advanced Study Institute held in Istanbul, August 1977.
Calogero, F. 1981. Matrices, differential operators, and polynomials. J. Math. Phys., 22(5), 919–934.
Calogero, P., Ragnisco, O. and Marchioro, C. 1975. Exact solution of the classical and quantal one-dimensional many-body problems with the two-body potential V (x) = g2a2 sinh-2 ax. Lett. al Nuovo Cimento, 13, 383–387.
Case, K. M. 1973. On discrete inverse scattering problems. II. J. Math. Phys., 14(7), 916–920.
Chudnovsky, D. 1979. Simpliied Schlesinger's systems. Lett. al Nuovo Cimento, 26, 423–427.
Chudnovsky, D. V. and Chudnovsky, G. V. 1980. Zakharov-Shabat-Mikhailov scheme of construction of two-dimensional completely integrable field theories. Zeit. für Physik C, 5, 55–62.
Chudnovsky, D. and Chudnovsky, G. 1982. Hamiltonian structure of isospectral deformation equations. Elliptic curve case. In: Chudnovsky, D. and Chudnovsky, G. (eds), The Riemann Problem, Complete Integrability and Arithmetic Applications. Lecture Notes in Mathematics, Vol. 925. Berlin: Springer-Verlag; pp. 134–146.
Coleman, S. 1975. Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D, 11, 2088–2097.
Coxeter, H. S. M. 1948. Regular Polytopes. London: Methuen.
Coxeter, H. S. M. and Moser, W. O. J. 1972. Generators and Relations for Discrete Groups, 3rd edn. Berlin: Springer-Verlag.
Dashen, R. F., Hasslacher, B. and Neveu, A. 1975. Particle spectrum in model field theories from semiclassical functional integral techniques. Phys.Rev.D, 11, 3424–3450.
Derrida, B. 1976. Solution d'un modèle à trois corps: étude de la dissusion. Ph.D. thesis, Université Paris.
des Cloizeaux, J. 1966. A soluble Fermi-gas model. Validity of transformations of the Bogoliubov type. J. Math. Phys., 7(12), 2136–2144.
des Cloizeaux, J. and Gaudin, M. 1966. Anisotropic linear magnetic chain. J. Math. Phys., 7(8), 1384–1400.
des Cloizeaux, J. and Pearson, J. J. 1962. Spin-wave spectrum of the antiferromagnetic linear chain. Phys. Rev., 128(5), 2131–2135.
Dirac, P. A. M. 1967. The Principles of Quantum Mechanics, 4th edn (revised). Oxford: Oxford University Press.
Dyson, F. J. 1956. General theory of spin-wave interactions. Phys. Rev., 102(5), 1217–1230.
Dyson, F. J. 1962. Statistical theory of the energy levels of complex systems. I. J. Math. Phys., 3(1), 140–156.
Dyson, F. J. 1976. Fredholm determinants and inverse scattering problems. Commun. Math. Phys., 47, 171–183.
Dzyaloshinskii, I. E. and Larkin, A. I. 1974. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Sov. Phys. JETP, 38. Russian original: ZhETF, Vol. 65, No. 1, p. 411, January 1974.
Faddeev, L. D. 1980. Quantum completely integrable models of ield theory. In: Mathematical Physics Review Section C, Vol. 107. New York: Harwood Academic; p. 155.
Fan, C. and Wu, F. Y. 1970. General lattice model of phase transitions. Phys. Rev. B, 2, 723–733.
Fateev, V. A. 1980. The factorizable S matrix for the particles with different parity and integrable anisotropic spin chain with spin one. Technical Report CERN, Ref. TH 2963.
Fisher, M. E. 1968. In: Proceedings of the International Conference on Statistical Mechanics, Kyoto.
Fisher, M. E. 1969. J. Phys. Soc. Japan Suppl., 26, 87.
Flaschka, H. 1974. On the Toda lattice. II. Prog. Theor. Phys., 51(3), 703–716.
Fogedby, H. C. 1980. Solitons and magnons in the classical Heisenberg chain. J. Phys. A: Math. Gen., 13(4), 1467.
Frobenius, F. G. 1880. Über das Additions-theorem der Thetafunktionen mehrerer Variabeln. J. reine angew. Math., 89, 185.
Frobenius, F. G. 1968. Gesammelte Abhandlungen, Band II. Berlin: Springer-Verlag.
Gaaff, A. and Hijmans, J. 1975. Symmetry relations in the sixteen-vertex model. Physica A, 80(2), 149–171.
Gaudin, M. 1967a. Étude d'une modèle à une dimension pour un système de fermions en interaction. Ph.D. thesis, Université Paris. CEA Report No. 5-3569 (1968).
Gaudin, M. 1967b. Un systeme à une dimension de fermions en interaction. Phys. Lett. A, 24(1), 55–56.
Gaudin, M. 1971a. Bose gas in one dimension. I. The closure property of the scattering wavefunctions. J. Math. Phys., 12(8), 1674–1676.
Gaudin, M. 1971b. Bose gas in one dimension. II. Orthogonality of the scattering states. J. Math. Phys., 12(8), 1677–1680.
Gaudin, M. 1971c. Boundary energy of a Bose gas in one dimension. Phys. Rev. A, 4, 386–394.
Gaudin, M. 1971d. Thermodynamics of the Heisenberg-Ising ring for Δ ≥ 1. Phys. Rev. Lett., 26(21), 1301–1304.
Gaudin, M. (1) 1972; (2) 1973. Modèles exacts en mécanique statistique: la méthode de Bethe et généralisations. Technical Report, CEA Saclay.
Gaudin, M. 1976. Diagonalisation d'une classe d'Hamiltoniens de spin. J. Physique, 37, 1087–1098.
Gaudin, M. 1978. Sur le problème de deux ou trois électrons en présence d'un moment localisé. J. Physique, 39, 1143–1168.
Gaudin, M. and Derrida, B. 1975. Solution exacte d'un probléme à trois corps. J. Physique, 36, 1183–1197.
Gaudin, M., McCoy, B. M. and Wu, T. T. 1981. Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg-Ising chain. Phys. Rev. D, 23, 417–419.
Girardeau, M. 1960. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys., 1(6), 516–523.
Green, H. S. and Hurst, C. A. 1964. Order-Disorder Phenomena. New York: Wiley-Interscience.
Grifiths, R. B. 1964. Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain. Phys. Rev., 133(3A), A768–A775.
Gutkin, E. and Sutherland, B. 1979. Completely integrable systems and groups generated by reflections. Proc. Nat. Acad. Sci. USA, 76, 6057–6059.
Hammermesh, M. 1964. Group Theory and its Application to Physical Problems. New York: Addison-Wesley.
Heine, E. 1881. Handbuch der Kugelfunktionen II, 2nd edn. Berlin: Springer-Verlag; p. 472.
Heisenberg, W. 1928. Zur Theorie des Ferromagnetismus. Z. Phys., 49, 619.
Hida, K. 1981. Rigorous derivation of the distribution of the eigenstates of the quantum Heisenberg-Ising chain with XY-like anisotropy. Phys. Lett. A, 84(6), 338–340.
Hirota, R. 1973. Exact N-soliton solution of a nonlinear lumped network equation. J. Phys. Soc. Japan, 35(1), 286–288.
Hirota, R. and Satsuma, J. 1976. A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theor. Phys. Suppl., 59, 64–100.
Honerkamp, J. and Weber, P. 1979. Calculation of the S-matrix from the Hamiltonian of the massive Thirring model. Technical Report, Université Fribourg.
Hulthén, L. 1938. Über das Austauschproblem eines Kristalles. Arkiv Mat. Astron. Fysik, 26A, 1.
Huston, V. 1963. The circular plate condenser at small separations. Proc. Camb. Phil. Soc., 59, 211.
Iagolnitzer, D. 1978. Factorization of the multiparticle S matrix in two-dimensional space-time models. Phys. Rev. D, 18, 1275–1285.
Ising, E. 1925. Beitrag zur Theorie des Ferromagnetismus. Zeit. für Phys., 31, 253–258.
Izergin, A. G. and Korepin, V. E. 1981. The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. Math. Phys., 79, 303–316.
Jimbo, M., Miwa, T., Mori, Y. and Sato, M. 1980. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D, 1(1), 80–158.
Johnson, J. D. and McCoy, B. M. 1972. Low-temperature thermodynamics of the | Δ | ≥ 1 Heisenberg-Ising ring. Phys.Rev. A, 6, 1613–1626.
Johnson, J. D., Krinsky, S. and McCoy, B. M. 1973. Vertical-arrow correlation length in the eight-vertex model and the low-lying excitations of the X-Y-Z Hamiltonian. Phys. Rev. A, 8(5), 2526–2547.
Jost, R. 1955. Mathematical analysis of a simple model for the stripping reaction. Zeit. für Angew. Math. Phys., 6, 316–326.
Kac, M. and Pollard, H. 1956. Partial sums of independent random variables. Canadian J. Math., 2, 375.
Kadanoff, L. P. and Wegner, F. J. 1971. Some critical properties of the eight-vertex model. Phys.Rev.B, 4, 3989–3993.
Karowski, M., Thun, H. J., Truong, T. T., and Weisz, P. H. 1977. On the uniqueness of a purely elastic S-matrix in (1+1) dimensions. Phys. Lett. B, 67(3), 321–322.
Kasteleyn, W. P. 1967. Graph theory and crystal physics. In: Harary, F. (ed.), Graph Theory and Theoretical Physics. New York: Academic Press.
Kirchhoff, G. 1877. Zur Theorice des Condensators. Monatsb. Acad. Wiss. Berlin, 144–162.
Korepin, V. E. 1980. The mass spectrum and the S-matrix of the massive Thirring model in the repulsive case. Commun. Math. Phys., 76, 165–176.
Korepin, V. E. 1982. Calculation of norms of Bethe wavefunctions. Commun. Math. Phys., 86, 391–418.
Kulish, P. P. 1979. Generalized Bethe ansatz and quantum inverse problem method. Preprint, Leningrad Branch of the Mathematics Institute, Leningrad.
Kulish, P. P. and Sklyanin, E. K. 1979. Quantum inverse scattering method and the Heisenberg ferromagnet. Phys. Lett. A, 70(5&6), 461–463.
Kulish, P., Reshetikhin, N. and Sklyanin, E. 1981. Yang-Baxter equation and representation theory: I. Lett. Math. Phys., 5, 393–403.
Lai, C. K. 1974. Lattice gas with nearest-neighbor interaction in one dimension with arbitrary statistics. J. Math. Phys., 15(10), 1675–1676.
Lakshmanan, M. 1977. Continuum spin system as an exactly solvable dynamical system. Phys. Lett. A, 61(1), 53–54.
Lax, P. D. 1968. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math., 21(5), 467–490.
Lenard, A. 1964. Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons. J. Math. Phys., 5(7), 930–943.
Leppington, F. and Levine, H. 1970. On the capacity of the circular disc condenser at small separation. Proc. Camb. Phil. Soc., 68, 235.
Lieb, E. H. 1963. Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev., 130(4), 1616–1624.
Lieb, E. H. 1967a. Exact solution of the F model of an antiferroelectric. Phys. Rev. Lett., 18, 1046–1048.
Lieb, E. H. 1967b. Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett., 18, 692–694.
Lieb, E. H. 1967c. Exact solution of the two-dimensional Slater KDP model of a ferroelectric. Phys. Rev. Lett., 19, 108–110.
Lieb, E. H. 1967d. Residual entropy of square ice. Phys. Rev., 162, 162–172.
Lieb, E. H. and Liniger, W. 1963. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130(4), 1605–1616.
Lieb, E. H. and Mattis, D. 1962. Theory of ferromagnetism and the ordering of electronic energy levels. Phys. Rev., 125(1), 164–172.
Lieb, E. and Mattis, D. (eds). 1966. Mathematical Physics in One Dimension. New York: Academic Press.
Lieb, E. H. and Wu, F. Y. 1968. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20(25), 1445–1448.
Lieb, E. and Wu, F. Y. 1972. Two dimensional ferroelectric models. In: Domb, C. and Green, M. S. (eds), Critical Phenomena and Phase Transitions. New York: Academic Press.
Lieb, E., Schultz, T. and Mattis, D. 1961. Two soluble models of an antiferromagnetic chain. Ann. Phys., 16, 407–466.
Lipszyc, K. 1973. One-dimensional model of the rearrangement and dissociation processes. Probability amplitudes and cross-sections. Acta Phys. Polon., 44, 115–137.
Lipszyc, K. 1974. One-dimensional model of the rearrangement process and the Faddeev equations. J. Math. Phys., 15(1), 133–138.
Lipszyc, K. 1980. On the application of the Sommerfeld-Maluzhinetz transformation to some one-dimensional three-particle problems. J. Math. Phys., 21(5), 1092–1102.
Luther, A. and Peschel, I. 1975. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B, 12(9), 3908–3917.
Luttinger, J. M. 1963. An exactly soluble model of a many-fermion system. J. Math. Phys., 4(9), 1154–1162.
Mattheiss, L. F. 1961. Antiferromagnetic linear chain. Phys. Rev., 123(4), 1209–1218.
Mattis, D. C. and Lieb, E. H. 1965. Exact solution of a many-fermion system and its associated boson field. J. Math. Phys., 6, 304–312.
McCoy, B. and Wu, T. 1968. Hydrogen-bonded crystals and the anisotropic Heisenberg chain. Nuovo Cimento B, 56, 311–315.
McCoy, B. and Wu, T. T. 1973. The Two-dimensional Ising Model. Cambrdige, MA: Harvard University Press.
McGuire, J. B. 1964. Study of exactly soluble one-dimensional N-body problems. J. Math. Phys., 5(5), 622–636.
McGuire, J. B. 1965. Interacting fermions in one dimension. I. Repulsive potential. J. Math. Phys., 6(3), 432–439.
McGuire, J. B. 1966. Interacting fermions in one dimension. II. Attractive potential. J. Math. Phys., 7(1), 123–132.
McGuire, J. B. and Hurst, C. A. 1972. The scattering of three impenetrable particles in one dimension. J. Math. Phys., 13(10), 1595–1607.
Mehta, M. L. 1980. Random Matrices. New York: Academic Press.
Mikhlin, S. 1964. Integral Equations. Oxford: Pergamon Press.
Muir, T. 1966. A Treatise on the Theory of Determinants (1933). New York: Dover.
Nagle, J. F. 1966. Lattice statistics of hydrogen bonded crystals. I. The residual entropy of ice. J. Math. Phys., 7(8), 1484–1491.
Nussenzveig, H. M. 1961. Soluble model of a break-up process. Proc. Roy. Soc. London A, 264(1318), 408–430.
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 65, 117–149.
Onsager, L. and Dupuis, M. 1960. Corso: Thermodinamica dei processi irreversibili. In: Rendiconti della Scuola internazionale di Fisica (Enrico Fermi) X. Societa Italiana di Fisica, Bologna.
Orbach, R. 1958. Linear antiferromagnetic chain with anisotropic coupling. Phys. Rev., 112(2), 309–316.
Ovchinnikov, A. A. 1967. Complexes of several spins in a linear Heisenberg chain. Sov. Phys. JETP Lett., 5, 48.
Ovchinnikov, A. A. 1969. Excitation spectrum of an antiferromagnetic Heisenberg chain. Sov. Phys. JETP, 29, 727.
Ovchinnikov, A. A. 1970. Excitation spectrum in the one-dimensional Hubbard model. Sov. Phys. JETP, 30, 1160.
Pauling, L. 1960. The Nature of the Chemical Bond, 3rd edn. Ithaca, NY: Cornell University Press.
Percus, J. K. 1971. Combinatorial Methods. New York: Springer-Verlag.
Pohlmeyer, K. 1976. Integrable Hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys., 46, 207–221.
Richardson, R. W. 1965. Exact eigenstates of the pairing-force Hamiltonian. II. J. Math. Phys., 6(7), 1034–1051.
Ruijsenaars, S. N. M. 1980a. On one-dimensional integrable quantum systems with ininitely many degrees of freedom. Ann. Phys., 128(2), 335–362.
Ruijsenaars, S. N. M. 1980b. The continuum limit of the infinite isotropic Heisenberg chain in its ground state representation. J. Funct. Anal., 39(1), 75–84.
Schroer, B., Truong, T. T. and Weisz, P. 1976. Towards an explicit construction of the sine-Gordon ield theory. Phys. Lett. B, 63(4), 422–424.
Schwartz, L. 1950. Théorie des distributions. Paris: Hermann.
Siegel, C. L. 1969. Topics in Complex Function Theory. New York: Wiley-Interscience.
Siegel, C. L. 1973. Topics in Complex Function Theory, 2nd edn. New York: Wiley-Interscience.
Sklyanin, E. K., Takhtadzhyan, L. A. and Faddeev, L. D. 1979. Quantum inverse problem method. I. Theor. Math. Phys., 40, 688–706.
Slater, J. C. 1930. Cohesion in monovalent metals. Phys. Rev., 35(5), 509–529.
Sneddon, I. N. 1966. Mixed Boundary Value Problems in Potential Theory. Amsterdam: North-Holland.
Sutherland, B. 1968. Further results for the many-body problem in one dimension. Phys. Rev. Lett., 20(3), 98.
Sutherland, B. 1970. Two-dimensional hydrogen bonded crystals without the ice rule. J. Math. Phys., 11(11), 3183–3186.
Sutherland, B. 1971. Quantum many-body problem in one dimension: thermodynamics. J. Math. Phys., 12(2), 251–256.
Sutherland, B. 1975. Model for a multicomponent quantum system. Phys. Rev. B, 12(9), 3795–3805.
Sutherland, B. 1980. Nondiffractive scattering: Scattering from kaleidoscopes. J. Math. Phys., 21(7), 1770–1775.
Sutherland, B., Yang, C. N. and Yang, C. P. 1967. Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett., 19, 588.
Szegö, G. 1939. Orthogonal Polynomials. Rhode Island: American Mathematical Society.
Takahashi, M. 1971. One-dimensional Heisenberg model at inite temperature. Prog. Theor. Phys., 46(2), 401–415.
Takahashi, M. and Suzuki, M. 1972. One-dimensional anisotropic Heisenberg model at finite temperatures. Prog. Theor. Phys., 48(6), 2187–2209.
Takhtadzhyan, L. A. and Faddeev, L. D. 1974. Essentially nonlinear one-dimensional model of classical field theory. Theor. Math. Phys., 21, 1046–1057.
Takhtajan, L. A. 1977. Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. A, 64(2), 235–237.
Thacker, H. B. 1980. Quantum inverse method for two-dimensional ice and ferroelectric lattice models. J. Math. Phys., 21(5), 1115–1117.
Thacker, H. B. 1981. Exact integrability in quantum ield theory and statistical systems. Rev. Mod. Phys., 53(2), 253–285.
Thomas, L. E. 1977. Ground state representation of the ininite one-dimensional Heisenberg ferromagnet, I. J. Math. Anal. Appl., 59(2), 392–414.
Titchmarsh, E. C. 1939. The Theory of Functions, 2nd edn. London: Oxford University Press.
Toda, M. 1970. Waves in nonlinear lattice. Prog. Theor. Phys. Suppl., 45, 174–200.
Vaidya, H. G. and Tracy, C. A. 1979. One-particle reduced density matrix of impenetrable bosons in one dimension at zero temperature. Phys. Rev. Lett., 42, 3–6.
Walker, L. R. 1959. Antiferromagnetic linear chain. Phys. Rev., 116(5), 1089–1090.
Wannier, G. H. 1950. Antiferromagnetism. The triangular Ising net. Phys. Rev., 79, 357–364.
Weyl, H. 1935. Elementary Theory of Invariants. Princeton, NJ: Princeton University Press.
Whittaker, E. T. and Watson, G. N. 1927. A Course of Modern Analysis, 4th edn. Cambridge: Cambridge University Press.
Wiegmann, P. B. 1981. Exact solution of the s-d exchange model (Kondo problem). J. Phys. C: Solid State Phys., 14(10), 1463.
Woynarovich, F. 1982. On the S = 0 excited states of an anisotropic Heisenberg chain. J. Phys. A., 15, 2985–2996.
Yang, C. N. 1952. The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev., 85, 808–816.
Yang, C. N. 1967. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett., 19(23), 1312–1315.
Yang, C. N. 1968. S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys. Rev., 168, 1920–1923.
Yang, C. N. and Yang, C. P. 1966a. Ground-state energy of a Heisenberg-Ising lattice. Phys. Rev., 147, 303–306.
Yang, C. N. and Yang, C. P. 1966b. One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a inite system. Phys. Rev., 150(1), 321–327.
Yang, C. N. and Yang, C. P. 1966c. One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground-state energy per lattice site for an ininite system. Phys. Rev., 150(1), 327–339.
Yang, C. N. and Yang, C. P. 1966d. One-dimensional chain of anisotropic spin-spin interactions. III. Applications. Phys. Rev., 151(1), 258–264.
Yang, C. N. and Yang, C. P. 1969. Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 10(7), 1115–1122.
Yang, C. P. 1967. Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett., 19, 586–588.
Zakharov, V. E. and Shabat, A. B. 1972. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Sov. Phys. JETP, 34(1), 62.
Zamolodchikov, A. B. 1977. Exact two-particle S-matrix of quantum sine-Gordon solitons. Commun. Math. Phys., 55, 183–186.
Zamolodchikov, A. B. 1979. Z4-symmetric factorized S-matrix in two space-time dimensions. Commun. Math. Phys., 69, 165–178.
Zamolodchikov, A. B. 1980. Tetrahedra equations and integrable systems in three-dimensional space. Sov. Phys. JETP, 52(2), 325.
Zamolodchikov, A. B. and Zamolodchikov, Al. B. 1978. Relativistic factorized S-matrix in two dimensions having O (N) isotopic symmetry. Nucl. Phys. B, 133(3), 525–535.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.